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ABSTRACT

Community structure is ubiquitous in real-world complex
networks. The task of community detection over these net-
works is of paramount importance in a variety of applications.
Recently, nonnegative matrix factorization (NMF) has been
widely adopted for community detection due to its great in-
terpretability and its natural fitness for capturing the commu-
nity membership of nodes. However, the existing NMF-based
community detection approaches are shallow methods. They
learn the community assignment by mapping the original
network to the community membership space directly. Con-
sidering the complicated and diversified topology structures
of real-world networks, it is highly possible that the mapping
between the original network and the community member-
ship space contains rather complex hierarchical information,
which cannot be interpreted by classic shallow NMF-based
approaches. Inspired by the unique feature representation
learning capability of deep autoencoder, we propose a novel
model, named Deep Autoencoder-like NMF (DANMF), for
community detection. Similar to deep autoencoder, DANMF
consists of an encoder component and a decoder component.
This architecture empowers DANMF to learn the hierarchical
mappings between the original network and the final com-
munity assignment with implicit low-to-high level hidden
attributes of the original network learnt in the intermediate
layers. Thus, DANMF should be better suited to the com-
munity detection task. Extensive experiments on benchmark
datasets demonstrate that DANMF can achieve better per-
formance than the state-of-the-art NMF-based community
detection approaches.
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1 INTRODUCTION

Many real-world complex interaction systems in nature and
society can be characterized by complex networks, such as
social networks, collaboration networks, citation networks,
biological neural networks, and protein interaction networks
[10, 22, 51]. These networks often consist of functional units,
which manifest in the form of communities, i.e., groups of
nodes with dense internal connections and sparse external
connections [11]. It is well understood that analyzing the un-
derlying community structure is of significant importance to
reveal the organizational patterns and structural functions of
network systems. Besides, community detection has boosted
diversified practical applications, such as advertising, viral
marketing, friend recommendation, and infectious disease
control [9], to name but a few.

Over the past two decades, a great deal of effort has been
devoted to analyzing the community structure of networks.
Thus a plethora of community detection approaches have
been proposed and successfully applied to specific networks
[1, 25, 36, 38, 44]. Traditional community detection approach-
es seek to find the optimal community structure via opti-
mizing certain criteria, e.g., modularity [24], normalized cut
[31], permanence [7], and conductance [18]. These approach-
es usually assign each node to only one community, which
contradicts the fact that a node can naturally participate
in multiple communities. For example, a person can join in
several discussion groups in an online forum, a researcher
may be active in several areas. In recent years, nonnegative
matrix factorization (NMF) has been broadly adopted for
community detection [39, 41, 43, 47, 48], mostly because of
the better interpretability derived from the nonnegative con-
straints and its natural fitness for disjoint and overlapping
community detection. NMF-based community detection ap-
proaches approximately factorize the adjacency matrix A of
a given network into two nonnegative factor matrices U and
V, i.e., A ≈ UV (U ≥ 0,V ≥ 0). As such, each column of
the factor matrix V can be interpreted as the propensity of a
node belonging to different communities (i.e., the community
membership), and the factor matrix U can be treated as
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the mapping between the original network and the commu-
nity membership space. Some NMF-variants have also been
utilized to deal with the community detection task, includ-
ing bayesian NMF [28], nonnegative matrix tri-factorization
[26, 49], and binary NMF [50].

Although various NMF-based approaches have been devel-
oped for community detection and promising performance has
been delivered on some specific applications, it is still a big
challenge to identify the intrinsic community structure of net-
works [10]. In addition, the existing NMF-based community
detection approaches are all shallow methods. As aforemen-
tioned, there is only one layer mapping between the original
network and the community membership space. Considering
the complicated and diversified organizational patterns of
real-world networks, it is highly possible that the mapping
between the original network and the community membership
space contains rather complex hierarchical and structural
information with implicit lower-level hidden attributes, which
cannot be interpreted by classic shallow NMF-based commu-
nity detection approaches. Intuitively, similar nodes are more
likely to be contained in the same community. In this regard,
the classic shallow NMF-based methods actually learn the
community-level similarity between nodes directly. Recently,
deep autoencoder has been widely applied in unsupervised
learning problems due to its unique feature representation
learning capability [14]. Besides, deep autoencoder is an ex-
cellent scheme to narrow the gap between the lower-level
abstraction and the higher-level abstraction of the original
data [2]. Inspired by deep autoencoder, we can argue that
by further factoring the mapping U, in a way that each
factor adds an extra layer of abstraction of the similarity
between nodes from lower level to higher level, we can then
obtain a better community-level similarity between nodes
(i.e., a more accurate community membership matrix V), as
demonstrated in Figure 1. For example, we can learn the
similarity between nodes from the first-order proximity [34],
to the degree assortativity [8], the structural identity [19, 30],
and finally the community-level similarity.

Based on the discussions above, in this paper, we propose a
novel model, named Deep Autoencoder-like NMF (DANMF),
to deal with the community detection task. Instead of merely
applying the concept of NMF to a multi-layer structure as
shown in Figure 1, DANMF consists of an encoder component
and a decoder component, both with deep structures. Similar
to deep autoencoder, the encoder component attempts to
transform the original network into the community member-
ship space with implicit low-dimensional hidden attributes
captured in the intermediate layers. Each intermediate layer
interprets the similarity between nodes at different levels
of granularity. The decoder component is symmetric with
the encoder component. It seeks to reconstruct the original
network from the community membership space with the aid
of the hierarchical mappings learnt in the encoder component.
Different from traditional NMF-based community detection
methods that consider only the loss function of the decoder
component, DANMF integrates both the encoder component
and the decoder component into a unified loss function. In
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Figure 1: (a) The architecture of NMF. (b) The archi-
tecture of deep NMF. Deep NMF learns a hierarchy
of hidden attributes that aid in uncovering the final
community membership of nodes.

this way, DANMF inherits the representation learning capa-
bility of deep autoencoder [2], while it improves the model’s
interpretability due to the nonnegative constraints, and it is
suited for both disjoint community detection and overlapping
community detection. Besides, DANMF incorporates a graph
regularizer to respect the intrinsic geometric structure of
node pairs. The overall framework of DANMF is illustrated
in Figure 2.

Our main contributions can be summarized as follows:

∙ We propose a deep autoencoder-like NMF model, name-
ly DANMF, to deal with the community detection task.
To the best of our knowledge, it is the first approach
to introduce deep NMF for community detection.
∙ We develop an efficient learning algorithm to optimize
the proposed DANMF model, inspired by recent ad-
vances in deep learning [14].
∙ We conduct extensive experiments to evaluate the effec-
tiveness and efficiency of DANMF. The results demon-
strate that DANMF is superior over the state-of-the-art
shallow NMF-based community detection methods.

The rest of this paper is organized as follows. Section 2 pro-
vides an overview of the related work. Section 3 describes the
proposed DANMF model in detail. The learning algorithm
is presented in Section 4. Then, we report the experimen-
tal results in Section 5. Finally, we conclude this paper in
Section 6.

2 RELATED WORK

In this section, we briefly review the related work regarding
community detection and deep matrix factorization.

2.1 Community Detection

Real-world complex networks often exhibit distinct charac-
teristics, one of them is the presence of densely connected
subnetworks, also referred to as communities. The task of
community detection is to find the community structure of a
given network. The problem has been a very popular research
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topic in recent years and lots of effort has been devoted to
developing delicate community detection methods [10, 18, 42].
However, there is no consensus on the formalization of the
community detection task and a variety of criteria are pro-
posed to characterize the property of a community, such as
modularity [24], normalized cut [31], permanence [7], and
conductance [18]. For a detailed review of such criteria, please
refer to [6]. Among these criteria, modularity has received the
most extensive attention, which requires that the number of
edges within a community should be significantly larger than
the expected number of edges when all edges are randomly
distributed. The typical modularity-based methods include
greedy algorithm [23], Louvain [3], and spectral optimization
[24]. However, most of these methods aim to find disjoint
communities, which contradicts the fact that a node can
naturally participate in multiple communities.

As another research topic, NMF has emerged as an im-
perative tool for clustering analysis due to its powerful in-
terpretability. The key of NMF is to reconstruct the original
data from low-dimensional representations. With the nonneg-
ative constraints, NMF naturally fits into disjoint community
detection and overlapping community detection. As a result,
numerous NMF-based community detection approaches have
been proposed [19, 28, 30, 39, 41, 43, 47, 48, 50]. For example,
Psorakis et al. [28] utilize a bayesian generative model to
extract communities, which puts a half-normal prior over
each community and then maximizes the log-likelihood of
generating the original network. Zhang et al. [47] propose a
preference-based NMF model to incorporate the implicit link
preference information into overlapping community detection
based on a basic assumption that a node prefers to build links
with nodes inside its community than those outside. Yang and
Leskovec [43] develop a scalable NMF-based model, which
can be applied to detect densely overlapping, hierarchically
nested as well as non-overlapping communities in massive
networks. Recently, several network embedding techniques
have also been employed to detect communities [5, 12, 34, 40],
which are able to learn higher-order similarity between nodes.
These methods have been proven to be closely related to
NMF or standard matrix factorization as well [29].

2.2 Deep Matrix Factorization

It is common that complex data objects consist of hierarchi-
cal attributes, each of which represents a different level of
abstract understanding of the objects. This phenomenon has
motivated the rapid development of deep learning, which is a
powerful technique to do representation learning [2]. As the
success of deep learning, there have been some explorations
on deep matrix factorization [13, 32, 37, 45]. The general
idea of them is to stack one-layer matrix factorization into
multiple layers, in the hope that hierarchical mappings can
be obtained. In [37], a multi-layer semi-NMF model with
a complete deep architecture is proposed to automatically
learn a hierarchy of attributes to facilitate clustering tasks.
In [32], Song et al. propose a structure of multi-layer NMF
for classification tasks, where non-smooth NMF is adopted to

solve typical NMF in each layer. A sparse deep NMF model is
then proposed and successfully applied to explore the sparse
structure of data objects by using the Nesterov’s accelerated
gradient descent algorithm [13]. More recently, Yu et al. [45]
propose a deep non-smooth NMF architecture to learn part-
based and hierarchical attributes simultaneously. However,
all these models only consist of a decoder component.

Our proposed deep autoencoder-like NMF model DANMF
integrates the encoder component and the decoder component.
Thus, DANMF is fundamentally different from the existing
deep matrix factorization models. What’s more, DANMF is
able to better inherit the representation learning capability
of deep autoencoder. It is worth mentioning that some deep
learning approaches like GraphEncoder [35] have already
been employed for community detection. However, these
approaches do not lend themselves to overlapping community
detection, and there are usually a lot of parameters to be
tuned. A nonnegative symmetric encoder-decoder approach
[33] has also been developed for community detection, but it
is a shallow model.

3 DEEP AUTOENCODER-LIKE NMF
FOR COMMUNITY DETECTION

In this section, we describe our proposed deep autoencoder-
like NMF mode (i.e., DANMF) for community detection. We
start by introducing the notations and some preliminaries.
Then, we present the details of DANMF. The architecture of
DANMF is shown in Figure 2.

3.1 Notations and Preliminaries

Throughout this paper, we denote matrices by bold uppercase
letters. For a given matrix X, its (𝑖, 𝑗)-th entry is denoted
by [X]𝑖𝑗 . The trace and Frobenius norm of X are denoted by
𝑡𝑟(X) and ‖X‖𝐹 , respectively. The zero matrix is denoted
by 0, and the identity matrix is denoted by I.

Let 𝒢 = (𝒱, ℰ) be a given network with 𝑛 = |𝒱| nodes and
𝑚 = |ℰ| edges, where 𝒱 and ℰ denote the node set and the
edge set respectively. Typically, network 𝒢 is described by an
adjacency matrix A, whose each entry [A]𝑖𝑗 characterizes the
relationship between nodes 𝑖 and 𝑗. For unweighted networks,
we have [A]𝑖𝑗 = 1 if there is an edge between nodes 𝑖 and 𝑗,
and [A]𝑖𝑗 = 0 otherwise. If network 𝒢 is weighted, then A
is real-valued. When A violates the nonnegative constraints,
we can normalize each entry of A to the range of [0, 1].

Assume that network 𝒢 consists of 𝑘 communities. Let 𝒞
denote the set of communities, i.e., 𝒞 = {𝐶𝑖|𝐶𝑖 ̸= ∅, 𝐶𝑖 ̸=
𝐶𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑘}, where 𝐶𝑖 represents the 𝑖-th community.
For disjoint community detection, it is required that 𝐶𝑖 ∩
𝐶𝑗 = ∅ if 𝑖 ̸= 𝑗. For overlapping community detection, this
constraint is neglected. Suppose that we have two nonnegative
matrices U ∈ R𝑛×𝑘

+ and V ∈ R𝑘×𝑛
+ , where each column of

U denotes the description of a community, and each column
of V represents the association relationship of a node to
different communities. Then, [U]𝑖𝑙[V]𝑙𝑗 can be interpreted as
the contribution of the 𝑙-th community to the edge [A]𝑖𝑗 . That

is, the expected interaction [Â]𝑖𝑗 =
∑︀𝑘

𝑙=1[U]𝑖𝑙[V]𝑙𝑗 between
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Figure 2: The architecture of DANMF. For illustra-
tion purpose, the depth is fixed at 2. The encoder
component (the left part) transforms the network in-
to the community membership space. The decoder
component (the right part) reconstructs the network
from the community membership space.

nodes 𝑖 and 𝑗 is the result of their mutual participation in
the same communities [21, 28]. Obviously, [Â]𝑖𝑗 should be as
closely consistent as possible with [A]𝑖𝑗 , which results in the
following objective function:

min
U,V
‖A−UV‖2𝐹 , s.t. U ≥ 0,V ≥ 0. (1)

Based on the learnt V, we can extract the community mem-
bership of nodes. For disjoint community detection, each
node is assigned to the community where it gets the largest
belonging propensity. For overlapping community detection,
we need to set a threshold in order to determine whether a
node belongs to a community or not. Such a threshold can
be obtained by taking the same strategy as suggested in [47].

3.2 Deep NMF

As shown in Eq. (1), NMF learns a one-layer mapping U
and a community-level similarity between nodes (i.e., the
community membership matrix V) directly. However, real-
world networks often consist of complicated and diversified
organizational patterns. Therefore, it is highly possible that
the mapping between the original network and the commu-
nity membership space contains rather complex hierarchical
and structural information with implicit lower-level hidden
attributes. It is well known that deep learning is able to
narrow the gap between the lower-level abstraction and the
higher-level abstraction of the original data [2]. In this sense,
we propose to further factorize the mapping U, in the hope
that each factor adds an extra layer of abstraction of the sim-
ilarity between nodes from low level to high level. Specifically,
the adjacency matrix A is factorized into 𝑝+ 1 nonnegative
factor matrices, as follows:

A ≈ U1U2 · · ·U𝑝V𝑝, (2)

where V𝑝 ∈ R𝑘×𝑛
+ , U𝑖 ∈ R𝑟𝑖−1×𝑟𝑖

+ (1 ≤ 𝑖 ≤ 𝑝), and we set
𝑛 = 𝑟0 ≥ 𝑟1 ≥ · · · ≥ 𝑟𝑝−1 ≥ 𝑟𝑝 = 𝑘.

The formulation in Eq. (2) allows for a hierarchy of 𝑝 layers
of abstract understanding of the original network, which can

be given by the following factorizations:

V𝑝−1 ≈ U𝑝V𝑝,

...

V2 ≈ U3 · · ·U𝑝V𝑝,

V1 ≈ U2 · · ·U𝑝V𝑝.

(3)

We retain the nonnegative constraints on V𝑖 (1 ≤ 𝑖 < 𝑝)
as well. By doing so, each layer of abstraction V𝑖 captures
the similarity between nodes at different levels of granularity,
ranging from the first-order proximity, to the structural iden-
tity, and finally the community-level similarity. This deep
structure will lead to more accurate community detection
results, i.e., a better V𝑝. In order to learn the factor matrices,
we derive the following objective function:

min
U𝑖,V𝑝

ℒD = ‖A−U1U2 · · ·U𝑝V𝑝‖2𝐹 ,

s.t. V𝑝 ≥ 0,U𝑖 ≥ 0,∀𝑖 = 1, 2, · · · , 𝑝.
(4)

After optimizing Eq. (4), we can obtain the hidden attributes
V𝑖 (𝑖 < 𝑝) by solving ‖A−U1U2 · · ·U𝑖V𝑖‖2𝐹 , similar to [37].

3.3 Deep Autoencoder-like NMF

As can be seen, both Eq. (1) and Eq. (4) are based on
reconstructing the original network, which corresponds to
the decoder component of an autoencoder. To better inherit
the representation learning capability of autoencoders, it is
essential to incorporate the encoder component into the NMF-
based community detection models, resulting in autoencoder-
like NMF models. The rationality of an autoencoder-like
NMF model is quite straightforward. For an ideal community
membership matrix V, on the one hand, it should be able
to reconstruct the original network via the mapping U with
smaller reconstruction error, and on the other hand, it should
be obtained by directly projecting the original network A
into the community membership space with the aid of the
mapping U, i.e., V = U𝑇A. By integrating the encoder
component and the decoder component into a unified loss
function, the two components are capable of guiding each
other during the learning process, and thus we tend to obtain
the ideal community membership of nodes. To achieve this
goal in the deep model, we derive the following objective
function for the encoder component:

min
U𝑖,V𝑝

ℒE = ‖V𝑝 −U𝑇
𝑝 · · ·U𝑇

2 U
𝑇
1 A‖2𝐹 ,

s.t. V𝑝 ≥ 0,U𝑖 ≥ 0, ∀𝑖 = 1, 2, · · · , 𝑝.
(5)

By combining Eq. (4) and Eq. (5), the unified objective
function of our deep autoencoder-like NMF model (i.e., DAN-
MF) is then given as follows:

min
U𝑖,V𝑝

ℒ = ℒD + ℒE + 𝜆ℒreg

= ‖A−U1U2 · · ·U𝑝V𝑝‖2𝐹 + ‖V𝑝 −U𝑇
𝑝 · · ·U𝑇

2 U
𝑇
1 A‖2𝐹

+ 𝜆𝑡𝑟(V𝑝LV
𝑇
𝑝 ),

s.t. V𝑝 ≥ 0,U𝑖 ≥ 0, ∀𝑖 = 1, 2, · · · , 𝑝.
(6)
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In Eq. (6), a graph regularizer ℒreg = 𝑡𝑟(V𝑝LV
𝑇
𝑝 ) is further

introduced to respect the intrinsic geometric structure of
node pairs. 𝜆 denotes the regularization parameter, and L
represents the graph Laplacian matrix. There are many ways
to define L [26]. In this paper, we focus on undirected net-
works, and we set L = D−A (D is a diagonal matrix whose
elements are row sums of A), based on a basic assumption
that linked nodes are more likely to be contained in the same
communities [48].

4 OPTIMIZATION

To expedite the approximation of the factor matrices in the
proposed model, we pre-train each of the layers to have an
initial approximation of the factor matrices U𝑖 and V𝑖. This
pre-training process can greatly reduce the training time of
our model. The effectiveness of pre-training has been proven
before on deep autoencoder networks [15]. To perform the pre-
training, we first decompose the adjacency matrix A ≈ U1V1

by minimizing ‖A−U1V1‖2𝐹 + ‖V1 −U𝑇
1 A‖2𝐹 , where U1 ∈

R𝑛×𝑟1
+ and V1 ∈ R𝑟1×𝑛

+ . Then, we decompose the matrix

V1 as V1 ≈ U2V2 by minimizing ‖V1 −U2V2‖2𝐹 + ‖V2 −
U𝑇

2 V1‖2𝐹 , where U2 ∈ R𝑟1×𝑟2
+ and V2 ∈ R𝑟2×𝑛

+ . Continue to
do so until all of the layers have been pre-trained. Afterwards,
each layer is fine-tuned by alternating minimization of the
proposed objective function in Eq. (6). In the following, we
present the updating rules.

4.1 Updating Rules

4.1.1 Updating rule for the mapping matrix U𝑖 (1 ≤ 𝑖 ≤ 𝑝).
By fixing all the variables except forU𝑖, the objective function
in Eq. (6) is reduced to:

min
U𝑖

ℒ(U𝑖) = ‖A−Ψ𝑖−1U𝑖Φ𝑖+1V𝑝‖2𝐹

+ ‖V𝑝 −Φ𝑇
𝑖+1U

𝑇
𝑖 Ψ

𝑇
𝑖−1A‖2𝐹 ,

s.t. U𝑖 ≥ 0,

(7)

where Ψ𝑖−1 = U1U2 · · ·U𝑖−1 and Φ𝑖+1 = U𝑖+1 · · ·U𝑝−1U𝑝.
When 𝑖 = 1, we set Ψ0 = I. Similarly, when 𝑖 = 𝑝, we set
Φ𝑝+1 = I.

To solve Eq. (7), we introduce a Lagrangian multiplier
matrix Θ𝑖 to enforce the nonnegative constraints on U𝑖,
resulting in the following equivalent objective function:

min
U𝑖,Θ𝑖

ℒ(U𝑖,Θ𝑖) = ‖A−Ψ𝑖−1U𝑖Φ𝑖+1V𝑝‖2𝐹

+ ‖V𝑝 −Φ𝑇
𝑖+1U

𝑇
𝑖 Ψ

𝑇
𝑖−1A‖2𝐹 − 𝑡𝑟(Θ𝑖U

𝑇
𝑖 ),

(8)

which can be further rewritten as follows:

min
U𝑖,Θ𝑖

ℒ(U𝑖,Θ𝑖) = 𝑡𝑟(A𝑇A+V𝑇
𝑝 V𝑝 − 4A𝑇Ψ𝑖−1U𝑖Φ𝑖+1V𝑝

+V𝑇
𝑝 Φ

𝑇
𝑖+1U

𝑇
𝑖 Ψ

𝑇
𝑖−1Ψ𝑖−1U𝑖Φ𝑖+1V𝑝

+A𝑇Ψ𝑖−1U𝑖Φ𝑖+1Φ
𝑇
𝑖+1U

𝑇
𝑖 Ψ

𝑇
𝑖−1A−Θ𝑖U

𝑇
𝑖 ).

(9)

By setting the partial derivative of ℒ(U𝑖,Θ𝑖) with respect
to U𝑖 to 0, we have:

Θ𝑖 = −4Ψ𝑇
𝑖−1AV𝑇

𝑝 Φ
𝑇
𝑖+1 + 2Π𝑖, (10)

where

Π𝑖 = Ψ𝑇
𝑖−1Ψ𝑖−1U𝑖Φ𝑖+1V𝑝V

𝑇
𝑝 Φ

𝑇
𝑖+1

+Ψ𝑇
𝑖−1AA𝑇Ψ𝑖−1U𝑖Φ𝑖+1Φ

𝑇
𝑖+1.

(11)

From the complementary slackness condition of the Karush-
Kuhn-Tucker (KKT) conditions [4], we obtain:

Θ𝑖 ⊙U𝑖 = (−4Ψ𝑇
𝑖−1AV𝑇

𝑝 Φ
𝑇
𝑖+1 + 2Π𝑖)⊙U𝑖 = 0, (12)

where ⊙ denotes the element-wise product. Equation (12)
is the fixed point equation that the solution must satisfy at
convergence. By solving this equation, we derive the following
updating rule for U𝑖:

U𝑖 ← U𝑖 ⊙
2Ψ𝑇

𝑖−1AV𝑇
𝑝 Φ

𝑇
𝑖+1

Π𝑖
. (13)

4.1.2 Updating rule for the community membership matrix
V𝑝. By fixing all the variables except for V𝑝, the objective
function in Eq. (6) is reduced to:

min
V𝑝

ℒ(V𝑝) = ‖A−Ψ𝑝V𝑝‖2𝐹 + ‖V𝑝 −Ψ𝑇
𝑝 A‖2𝐹

+ 𝜆𝑡𝑟(V𝑝LV
𝑇
𝑝 ),

s.t. V𝑝 ≥ 0.

(14)

Following similar derivation process of the updating rule
for U𝑖, the updating rule for V𝑝 is formulated as follows:

V𝑝 ← V𝑝 ⊙
2Ψ𝑇

𝑝 A+ 𝜆V𝑝A

Ψ𝑇
𝑝 Ψ𝑝V𝑝 +V𝑝 + 𝜆V𝑝D

. (15)

4.1.3 Updating rule for the feature matrix V𝑖 (1 ≤ 𝑖 < 𝑝).
The updating of V𝑖 is optional, since it does not affect the
value of the objective function in Eq. (6). However, we would
like to extract the hidden attributes in each intermediate layer.
To optimize V𝑖, we in fact seek to optimize the following
objective function:

min
V𝑖

ℒ(V𝑖) = ‖A−Ψ𝑖V𝑖‖2𝐹 + ‖V𝑖 −Ψ𝑇
𝑖 A‖2𝐹 ,

s.t. V𝑖 ≥ 0.
(16)

Similar to V𝑝, V𝑖 can be updated by

V𝑖 ← V𝑖 ⊙
2Ψ𝑇

𝑖 A

Ψ𝑇
𝑖 Ψ𝑖V𝑖 +V𝑖

. (17)

Until now, we have all the updating rules done. The over-
all optimization process of DANMF is outlined in Algorith-
m 1, where the “ShallowNMF” procedure performs the pre-
training as described earlier.

4.2 Convergence Analysis

The convergence of the updating rules is guaranteed by the
following two theorems.

Theorem 4.1. The limited solutions of the updating rules
in Eq. (13) and Eq. (15) satisfy the KKT optimality condition.

Proof. At convergence, we haveU
(∞)
𝑖 = U

(𝑡+1)
𝑖 = U

(𝑡)
𝑖 =

U𝑖, where 𝑡 denotes the 𝑡-th iteration. That is,

U𝑖 = U𝑖 ⊙
2Ψ𝑇

𝑖−1AV𝑇
𝑝 Φ

𝑇
𝑖+1

Π𝑖
, (18)
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Algorithm 1 Optimization algorithm of DANMF

Input: The adjacency matrix of network 𝒢, A;
The layer size of each layer, 𝑟𝑖;
The regularization parameter, 𝜆;

Output: The mapping matrix U𝑖 (1 ≤ 𝑖 ≤ 𝑝), the feature
matrix V𝑖 (1 ≤ 𝑖 < 𝑝), and the community membership
matrix V𝑝;

1: ◁ Pre-training process:
2: U1,V1 ← ShallowNMF(A, 𝑟1);
3: for 𝑖 = 2 to 𝑝 do
4: U𝑖,V𝑖 ← ShallowNMF(V𝑖−1, 𝑟𝑖);
5: end for
6: ◁ Fine-tuning process:
7: while not converged do
8: for 𝑖 = 1 to 𝑝 do
9: Ψ𝑖−1 ←

∏︀𝑖−1
𝜏=1 U𝜏 (Ψ0 ← I);

10: Φ𝑖+1 ←
∏︀𝑝

𝜏=𝑖+1 U𝜏 (Φ𝑝+1 ← I);

11: Update U𝑖 according to Eq. (13);
12: Ψ𝑖 ← Ψ𝑖−1U𝑖;
13: Update V𝑖 according to Eq. (17) (𝑖 < 𝑝, optional)

or according to Eq. (15) (𝑖 = 𝑝);
14: end for
15: end while
16: return U𝑖, V𝑖, ∀𝑖 = 1, 2, · · · , 𝑝 ;

which is equivalent to

(−4Ψ𝑇
𝑖−1AV𝑇

𝑝 Φ
𝑇
𝑖+1 + 2Π𝑖)⊙U𝑖 = 0. (19)

Clearly, Eq. (19) is identical to Eq. (12). In the same way,
the correctness of the updating rule in Eq. (15) for V𝑝 can
be proved. �

Theorem 4.2. The objective function ℒ in Eq. (6) is non-
increasing under the updating rules in Eq. (13) and Eq. (15).

The theorem above can be proved by leveraging an auxil-
iary function, following a similar process as described in [17].
To save space, we omit the proof here.

4.3 Time Complexity

Algorithm 1 is composed of two stages, i.e., the pre-training
stage and the fine-tuning stage. The computational complex-
ity for the pre-training stage is of order 𝒪(𝑝𝑡𝑝(𝑛2𝑟 + 𝑛𝑟2)),
where 𝑝 is the number of layers, 𝑡𝑝 is the number of iterations
to achieve convergence, and 𝑟 is the maximal layer size out of
all layers. The computational complexity for the fine-tuning
stage is of order 𝒪(𝑝𝑡𝑓 (𝑛2𝑟 + 𝑛𝑟2 + 𝑟3)), where 𝑡𝑓 is the
number of iterations in the fine-tuning process. In general,
𝑟 < 𝑛, thus the complexity is 𝒪(𝑝𝑡𝑓 (𝑛2𝑟+ 𝑛𝑟2)). To sum up,
the overall time complexity is 𝒪(𝑝(𝑡𝑝 + 𝑡𝑓 )(𝑛

2𝑟 + 𝑛𝑟2)).

4.4 Discussion

Our DANMF model is closely related to orthogonal NMF
(ONMF) [27] and projective NMF (PNMF) [46]. As DANMF
aims to optimize the encoder component and the decoder
component simultaneously, we have V𝑝 ≈ Ψ𝑇

𝑝 A and A ≈

Ψ𝑝V𝑝. Then, we have V𝑝 ≈ Ψ𝑇
𝑝 Ψ𝑝V𝑝, which requires that

Ψ𝑇
𝑝 Ψ𝑝 ≈ I. In this sense, DANMF is related to ONMF. On

the other hand, we have A ≈ Ψ𝑝Ψ
𝑇
𝑝 A, which leads to the

PNMF model. However, both ONMF and PNMF are shallow
models.

5 EXPERIMENTS

Now we move forward to evaluate the performance of the
proposed DANMF model for disjoint community detection
and overlapping community detection. All experiments are
conducted on a server with two 2.4GHz Intel Xeon CPUs
and 128GB main memory running Ubuntu 14.04.5 (64-bit).

5.1 Baseline Methods

Our basic hypothesis in this paper is that DANMF is able
to learn a better community-level similarity between nodes
(i.e., a more accurate community membership matrix) than
shallow NMF-based community detection approaches, with
the aid of a hierarchy of hidden attributes extracted in the
intermediate layers of the autoencoder-like deep structure. To
verify this hypothesis, we choose seven representative shallow
NMF-based methods as baselines. We also compare DANMF
with three state-of-the-art network embedding methods based
on the considerations that these methods can learn higher-
order similarity between nodes and that they are also closely
related to matrix factorization [29].

The NMF-based shallow models include:

∙ NMF: NMF is the fundamental component of the
proposed DANMF model. It has been adopted for
community detection in [21].
∙ ONMF: ONMF is a variant of NMF by enforcing
orthogonal constraints on the mapping matrix U, i.e.,
U𝑇U = I [27].
∙ PNMF: PNMF directly projects the original network
to a subspace by minimizing ‖A−UU𝑇A‖2𝐹 [46].
∙ BNMF: BNMF is a bayesian NMF model. It has been
adopted for community detection in [28].
∙ BigClam: BigClam is a cluster affiliation model, which
relaxes the graph fitting problem into a continuous
optimization problem [43].
∙ HNMF: HNMF is a probabilistic approach. It mod-
els the homogeneous relationships between edges and
communities for community detection [48].
∙ NSED: NSED is a nonnegative symmetric encoder-
decoder approach proposed for community detection.
Though it takes into account the encoder component, it
extracts the community membership from the mapping
matrix U rather than the feature matrix V [33].

The network embedding methods include:

∙ LINE: LINE preserves the first-order and second-order
proximities between nodes for learning low-dimensional
representations of nodes [34].
∙ Node2Vec: Node2Vec aims to learn higher-order sim-
ilarity between nodes via truncated random walks [12].
The in-out hyperparameter is fixed at 2 to better cap-
ture the community structure of networks.
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Table 1: Layers configuration of DANMF

Dataset 𝑛 Layers Configuration

Email 1005 1005-256-128-42
Wiki 2405 2405-256-128-19
Cora 2708 2708-256-64-7
Citeseer 3312 3312-256-64-6
Pubmed 19717 19717-512-64-3

Table 2: Error comparison on Wiki

Method Encoder Decoder Encoder+Decoder

NMF 0.2326 0.0543 0.2869
ONMF 0.0043 0.0547 0.0590
PNMF 0.0000 445.58 445.58
NSED 0.0025 0.0547 0.0572

DNMF 0.2131 0.0546 0.2677
DANMF 0.0020 0.0541 0.0561

∙ MNMF: MNMF is a modularized NMF model, which
incorporates the community structure into network
embedding [40].

For the network embedding methods, we set the size of
latent representations to be 64, and then apply the standard 𝑘-
means algorithm to identify communities. We also implement
a pruned version of DANMF, named DNMF, which ignores
the encoder component. For a fair comparison, we run each
algorithm 20 times and the average results are reported.

5.2 Disjoint Community Detection

5.2.1 Datasets. We adopt five real-world networks1 for
disjoint community detection.

∙ Email: A communication network involving 1005 re-
searchers from 42 departments and 25571 relationships.
∙ Wiki: A document network consisting of 2405 web
pages from 19 categories and 17981 edges.
∙ Cora: A citation network with 2708 nodes and 5429
edges. Each node is classified into one of 7 classes.
∙ Citeseer: A citation network with 3312 nodes and
4732 edges. Each node is classified into one of 6 classes.
∙ Pubmed: A citation network with 19717 nodes and
44338 edges. Each node is divided into one of 3 classes.

5.2.2 Community detection results. To measure the com-
munity detection results, we employ three evaluation metrics
including Adjusted Rand Index (ARI), Normalized Mutual
Information (NMI), and Accuracy (ACC). For these met-
rics, larger value indicates better performance. A detailed
description of them can be found in the survey paper [6]. The
regularization parameter of DANMF is tuned in the range of
{10−3, 10−2, 10−1, 100, 101}. And the layer size configuration
of DANMF is provided in Table 1. We implement DANMF
with three hidden layers. Although we have experimented
with more hidden layers, the performance promotion is not
significant while much more time is taken to train the model.

1See https://snap.stanford.edu/ and https://linqs.soe.ucsc.edu.

Table 3: Performance evaluation based on ARI

Method Email Wiki Cora Citeseer Pubmed

NMF 0.4989 0.1195 0.2145 0.0590 0.0978
ONMF 0.4832 0.1233 0.1964 0.0825 0.1589
PNMF 0.4641 0.1151 0.1863 0.0801 0.0967
BNMF 0.3545 0.1705 0.1812 0.0838 0.0872
BigClam 0.2478 0.0217 0.0306 0.0283 0.0258
HNMF 0.2079 0.1448 0.1113 0.0262 0.0360
NSED 0.5215 0.1253 0.1782 0.0866 0.1258

LINE 0.3325 0.1344 0.1271 0.0278 0.1017
Node2Vec 0.4195 0.1621 0.1063 0.0182 0.0170
MNMF 0.0041 0.0016 0.0002 0.0007 0.0001

DNMF 0.5256 0.1341 0.2452 0.0990 0.1185
DANMF 0.5521 0.1628 0.3194 0.1343 0.2563

Table 4: Performance evaluation based on NMI

Method Email Wiki Cora Citeseer Pubmed

NMF 0.6751 0.2673 0.2851 0.1319 0.1606
ONMF 0.6734 0.2607 0.2416 0.1423 0.1582
PNMF 0.6770 0.2684 0.2893 0.1355 0.1511
BNMF 0.5960 0.2903 0.2521 0.0835 0.0714
BigClam 0.5796 0.2722 0.1864 0.0735 0.0291
HNMF 0.5146 0.2959 0.1425 0.0312 0.0311
NSED 0.6845 0.2659 0.2928 0.1492 0.1729

LINE 0.6393 0.2772 0.2376 0.0573 0.1357
Node2Vec 0.6784 0.3331 0.1978 0.0486 0.0635
MNMF 0.2138 0.0274 0.0035 0.0031 0.0002

DNMF 0.6850 0.2798 0.3572 0.1582 0.1709
DANMF 0.6943 0.3406 0.4114 0.1831 0.2221

Since we assume that DANMF is able to better inherit the
learning capability of deep autoencoder, our first experiment
is to evaluate whether it achieves lower coding and reconstruc-
tion error. The coding error corresponding to the encoder
component is calculated as 1

𝑛
‖V−U𝑇A‖𝐹 , where 𝑛 denotes

the number of nodes. The reconstruction error corresponding
to the decoder component is calculated as 1

𝑛
‖A − UV‖𝐹 .

Note that in PNMF, we set V = U𝑇A directly. In DNMF
and DANMF, we have V = V𝑝 and U = U1U2 · · ·U𝑝. The
average results of 20 runs on Wiki is reported in Table 2. We
only report the results of the methods that involve the map-
ping U explicitly. The results show that DANMF achieves
much lower coding error than NMF and DNMF, which verifies
the necessity of the encoder component. Although DANMF
is much harder to train due to the multiple factor matrices, it
achieves comparable reconstruction error with NMF, which
demonstrates the effectiveness of our optimization algorithm.
Although the coding error of PNMF is 0, its reconstruction
error is extremely large.

Next we introduce the community detection results. Tabel-
s 3-5 show the comparison in ARI, NMI, and ACC respec-
tively. The best results are presented in blue color. As can be
seen, our DANMF model outperforms all the baselines across
different evaluation metrics except for ARI on Wiki. For
example, on the largest network Pubmed, DANMF achieves
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Table 5: Performance evaluation based on ACC

Method Email Wiki Cora Citeseer Pubmed

NMF 0.5851 0.3027 0.4103 0.3074 0.5133
ONMF 0.5761 0.3069 0.3811 0.3330 0.5575
PNMF 0.5791 0.3052 0.4029 0.3451 0.5073
BNMF 0.4299 0.3751 0.4191 0.3324 0.5110
BigClam 0.4768 0.2545 0.3781 0.3046 0.3978
HNMF 0.3463 0.3518 0.3903 0.2569 0.4128
NSED 0.6179 0.2981 0.4234 0.3448 0.5201

LINE 0.4657 0.3289 0.4044 0.3019 0.4990
Node2Vec 0.5244 0.3568 0.3674 0.2521 0.4067
MNMF 0.1075 0.0886 0.1647 0.1890 0.3397

DNMF 0.6199 0.3543 0.4849 0.3635 0.5389
DANMF 0.6358 0.4112 0.5499 0.4242 0.6393

a relative performance promotion of 9.74%, 4.92% and 8.18%
with respect to ARI, NMI and ACC respectively. It is noted
that DNMF also outperforms NMF consistently, which shows
that with the deep structure, we are indeed able to learn a
hierarchy of abstract understanding of the original networks
that can aid in uncovering the community membership of n-
odes. The superiority of DANMF over DNMF further verifies
that by integrating the encoder component and the decoder
component, DANMF is able to better inherit the learning ca-
pability of deep autoencoder. One may note that the network
embedding methods do not show satisfactory performance,
even though they seek to preserve higher-order similarity be-
tween nodes. The reason for LINE and Node2Vec is that they
are primarily focused on modeling the microscopic structure
instead of the mesoscopic community structure of networks.
The reason for MNMF may be that it adopts modularity to
reveal the community structure. However, modularity may
suffer from the resolution limit problem [6].

Although DANMF has a deep structure, it can be trained
efficiently. The runtime of DANMF on all the benchmark
networks is depicted in Figure 3. Note that Figure 3 is plotted
in log scale. It is observed that DANMF is quite efficient on
small networks. On the largest network Pubmed, DANMF
can also finish its training process in about 4000 seconds.

Email Wiki Cora Citeseer Pubmed
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Figure 3: Time overheads of DANMF.

5.2.3 Convergence analysis. The updating rules of our op-
timization algorithm are essentially iterative. Different from
the exact runtime, here we further investigate how fast these
rules can converge. Recall that our optimization algorithm
consists of the pre-training stage and the fine-tuning stage. In
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Figure 4: Convergence rate analysis.
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Figure 5: The effect of parameter 𝜆.

the pre-training stage, each layer in fact performs a shallow
NMF model, whose convergence has already been analyzed
[33]. Thus we focus on the fine-tuning stage and analyze its
convergence rate, which denotes the change rate of the objec-
tive function value. To test the convergence speed, we fix the
regularization parameter at 1. The results on Cora and Cite-
seer are shown in Figure 4. Similar results can be observed
on other networks. From Figure 4, we can see that DANMF
can achieve fast convergence within about 10 iterations.

5.2.4 Parameter sensitivity. In DANMF, the parameter 𝜆
is used to adjust the contribution of the graph regularizer.
It is tuned in the range of {10−3, 10−2, 10−1, 100, 101}. The
effect of 𝜆 on Cora and Citeseer is shown in Figure 5. To
some extent, DANMF is robust to the parameter 𝜆. On
both Cora and Citeseer, DANMF tends to obtain the best
performance when 𝜆 = 1. The results indicate that although
the performance of DANMF is stable with respect to 𝜆, a
proper 𝜆 can make DANMF be more robust.

There is no doubt that the performance of DANMF will
be affected by the layer size configuration of each layer, an
in-depth exploration of which is left as our future work.

5.2.5 Visualization. As DANMF is expected to be able
to learn the similarity between nodes from different levels
of granularity, we feed the learnt hidden attributes (i.e., the
feature matrix V𝑖 and the community membership matrix
V𝑝) into the standard t-SNE tool [20] to visualize them. For
comparison, we also visualize the original network. The result
on Cora is shown in Figure 6, where nodes belonging to the
same community share the same color. It is observed that the
original network represented by the adjacency matrix does
not embody clear community structure. While the hidden
attributes learnt in the intermediate layers of DANMF cap-
ture the similarity between nodes more accurately. Besides,
nodes belonging to the same community gather more and
more closer to each other as the layers go deeper.
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(a) Cora - before training (b) Cora - layer 1 (c) Cora - layer 2 (d) Cora - layer 3

Figure 6: 2D visualization of the representations learnt in different layers of DANMF on Cora.
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Figure 7: ONMI on LFR benchmarks with 𝜇 = 0.1.

5.3 Overlapping Community Detection

5.3.1 Datasets. Since few networks with ground-truth
overlapping communities are publically available, we em-
ploy the well-known LFR toolkit [16] to generate synthetic
networks with overlapping community structure. The param-
eters of the LFR benchmarks are set as follows. The number
of nodes is 5000, the average degree is 20, and the maximum
degree is 50. The community size ranges from 100 to 250.
The exponents of the power-law distributions of node degree
and community size are kept at 2 and 1, respectively. The
number of communities that an overlapping node belongs to
is fixed at 2. The mixing parameter 𝜇 (each node shares a
fraction 𝜇 of its edges with nodes in other communities) is
set to either 0.1 or 0.3, and the fraction of overlapping nodes
varies from 0.1 to 0.6 with an increment of 0.1. Thus, there
are 12 synthetic networks in total. For each network, the
layer size configuration of DANMF is set to 5000-512-128-𝑘,
where 𝑘 denotes the number of ground-truth communities.

5.3.2 Community detection results. Following [16], we use
the Overlapping NMI (ONMI) metric to evaluate the over-
lapping community detection results. The detailed description
of ONMI can also be found in the survey paper [6]. The re-
sults with respect to 𝜇 = 0.1 and 𝜇 = 0.3 are shown in
Figure 7 and Figure 8, respectively. Since the network em-
bedding methods are not suitable for overlapping community
detection, their results are neglected. As shown in Figure 7
and Figure 8, DANMF outperforms the other methods on all
the LFR benchmark networks. When the mixing parameter
𝜇 = 0.1, the performance of DANMF is relatively stable with
the change of the fraction of overlapping nodes. For example,
even on the network with 60% overlapping nodes, the ONMI
of DANMF reaches 0.9. While the performance of all the
methods on the LFR benchmark networks with 𝜇 = 0.3 drops
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Figure 8: ONMI on LFR benchmarks with 𝜇 = 0.3.

off precipitously as the fraction of overlapping nodes increases.
This is because when 𝜇 = 0.3, the community structure be-
comes less significant, which makes the community detection
task more difficult and more challenging. However, DANMF
still shows superior performance over the other methods con-
sistently. The results demonstrate that DANMF is capable of
detecting overlapping communities with better performance.

6 CONCLUSION

In this paper, we have introduced a novel deep autoencoder-
like model DANMF to combat the problem of community
detection. Different from traditional NMF-based community
detection methods, DANMF integrates the encoder compo-
nent and the decoder component into a unified loss function.
Both components are with deep structures. This architecture
empowers DANMF to better inherit the learning capabili-
ty of deep autoencoder. Although DANMF is much harder
to train due to the multiple factor matrices, the proposed
optimization algorithm can solve it efficiently. We have also
conducted extensive experiments for both disjoint commu-
nity detection and overlapping community detection. The
results demonstrate the superiority of DANMF over shallow
NMF-based methods. For future work, we plan to use other
cost functions to quantify the quality of the approximation,
e.g., the Kullback-Leibler divergence.
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