
IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 3, FEBRUARY 1, 2022 1737

A Unified Federated DNNs Framework for
Heterogeneous Mobile Devices

Xiaoli Li , Student Member, IEEE, Yuzheng Li, Shixuan Li, Yuren Zhou , Member, IEEE,
Chuan Chen , Member, IEEE, and Zibin Zheng , Senior Member, IEEE

Abstract—Mobile devices can generate a tremendous amount
of unique data, and thus, create countless opportunities for deep
learning tasks. Due to the concerns of data privacy, it is often
impractical to log all the data to a central server for training a sat-
isfactory model. In federated learning, the participating devices
can train a shared global model collaboratively while keeping
their data locally. However, it is not a trivial task to train the deep
neural networks (DNNs) with millions and billions of parameters
on resource-constrained mobile devices in a federated manner.
We replace each fully connected (FC) layer with two low-rank
projection matrices to compact the DNNs model, and establish
a global error function to recover the outputs of the com-
pressed DNNs model. Then, we design a communication-efficient
federated optimation Algorithm to reduce communication cost
further. Considering that the heterogeneous devices may run
different models at the same time, we devise three different
training patterns to integrate the heterogeneous devices running
different models. We conduct extensive experiments on both inde-
pendently identically distribution (IID) and non-IID data sets.
The experimental results demonstrate that the proposed frame-
work can significantly reduce the number of parameters and
communication cost while maintaining performance.

Index Terms—Communication efficient, deep neural networks
(DNNs), federated learning, heterogeneous, resource constrained.

I. INTRODUCTION

SMART mobile devices, such as smartphones, tablets,
wearable devices, and autonomous vehicles, are becoming

more and more popular. These devices generate a tremendous
amount of valuable data every day. Deep neural networks
(DNNs) models learned based on these data, such as face
recognition, medical diagnosis, and natural language process-
ing, are gaining extensive attention [1]. The conventional
training process of DNNs usually requires logging all the data
to a central cloud as it needs a great number of computations

Manuscript received February 22, 2021; revised May 24, 2021; accepted
June 7, 2021. Date of publication June 14, 2021; date of current ver-
sion January 24, 2022. This work was supported in part by the Key-
Area Research and Development Program of Guangdong Province under
Grant 2018B010109001; in part by the National Natural Science Foundation
of China under Grant 11801595; in part by the Guangdong Basic and Applied
Basic Research Foundation under Grant 2019A1515011043; in part by the
Natural Science Foundation of Guangdong under Grant 2018A030310076;
and in part by the Tencent Wechat Rhino-Bird Project under Grant 2021321.
(Corresponding author: Chuan Chen.)

The authors are with the School of Computer Science and Engineering,
Sun Yat-sen University, Guangzhou 510275, China (e-mail: lixli27@
mail2.sysu.edu.cn; liyzh23@mail2.sysu.edu.cn; lishx7@mail2.sysu.edu.cn;
zhouyuren@mail.sysu.edu.cn; chenchuan@mail.sysu.edu.cn; zhzibin@
mail.sysu.edu.cn).

Digital Object Identifier 10.1109/JIOT.2021.3088867

Fig. 1. Federated learning for image recognition on mobile devices: the
mobile devices collaboratively train a model, and any device does not expose
its local data to others. Each device in the federated framework obtains the
global model and uses it locally for image recognition. The accuracy of the
federated model is very close to the performance of the central model.

on large data. However, due to the concerns of data privacy,
it is often impractical to send users’ raw data to the central
cloud. On the other hand, once the training of DNNs is merely
based on the local data of a single device, it will lead to non-
precise results due to insufficient data. Hence, how to train a
DNNs high-quality centralized model without violating user
privacy is a challenge.

Recently, federated learning [2], [3] has been proposed.
The participating devices (clients) in federated learning per-
form computation based on their local data and exchange
information with the central server periodically to train a
shared global model collaboratively. Different from conven-
tional distributed machine learning, in federated Learning,
computing devices hold their data and the central server can-
not access the data on the devices directly or indirectly. Fig. 1
shows an example application of federated learning for image
recognition on mobile devices. It works as follows: mobile
devices communicate with a central server to download a
global model, improve it by performing local training on their
own user data, and send their local updates to the server.
After receiving these updates, the server immediately aggre-
gates them into a global update. After a certain number of
iterative training, each device obtains the global model, and
uses it locally for the tasks of image recognition. In addition,
the accuracy of the federated model can be approximated close

2327-4662 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 07,2022 at 07:13:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9113-7130
https://orcid.org/0000-0002-0497-0835
https://orcid.org/0000-0002-7048-3445
https://orcid.org/0000-0001-7872-7718

1738 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 3, FEBRUARY 1, 2022

to the performance of the central model, which is trained by
putting all data together. Federated learning provides globally
model training while ensuring privacy, so it is increasingly
attractive.

However, federated learning on mobile devices is a quite
difficult task, as it requires integrating DNNs into smart mobile
devices to obtain intelligence. The storage cost of DNNs is
unaffordable [4], [5] for mobile devices due to the hundreds of
millions of parameters. For example, an 8-layer-AlexNet with
more than 600 000 parameters costs about 240-MB storage. In
contrast, some mobile devices have strict constraints in terms
of memory capacity. It is very problematic that DNN models
are becoming more and more complex in terms of memory,
and most common hardware platforms are not able to keep up
with the exponential growth of the neural networks’ sizes [6].

Model compression is considered a solution that can fill the
computing gap between mobile devices and DNNS. Gradient
sparsification [7], [8] and gradient quantization [9] have been
dedicated to reducing the high network communication cost
for distributed deep learning. However, these methods focus on
the compression model in the communication process, and still
need to learn a full model update in the training process. By
combining pruning, training, quantization, and Huffman cod-
ing, Han et al. [10] reduced the storage requirement of DNNs
by 35× to 49× without affecting their accuracy. However,
these methods require additional definitions of new opera-
tions. The devices in federated learning need to exchange
their models or updates with others, and these new opera-
tions need to be unified and shared by all devices. Thus,
it is difficult to perform pruning, training quantization, and
Huffman coding in federated learning. Another model com-
pression method is to design lightweight DNN directly, such as
Mobilenetv [11], ShuffleNet [12], etc. However, these mobile-
friendly deep architectures require pretrain and fine-tune the
network parameters based on a huge amount of data. This
is not suitable for federated learning, which has no cen-
tralized data. Konecný et al. [13] proposed two structured
updates methods for communication-efficient federated learn-
ing, which can directly learn an update from a restricted space.
Structured updates methods retain the information obtained in
the training process, which are better than the unstructured
update (such as sparsification and quantization). However,
the structured updates methods require generating a low-rank
reconstruction matrix randomly or a predefined sparse pattern
for each client independently, and the global model obtained
by these methods cannot be reused by other devices due to
the lack of local low-rank reconstruction matrices or sparse
patterns. For the new devices to join the federated learning,
the DNNs model needs to be retrained.

Different from the above methods, we define a feder-
ated DNNs compression (FDNNC) framework for resource-
constrained mobile devices. The proposed compression model
uses a low-rank representation of the weight matrices of the
fully connected (FC) layers to compact the DNNs models.
Each FC layer is replaced by two low-rank projection matri-
ces. Instead of minimizing the reconstruction error between
the original FC layers parameters and the projection matrices,
FDNNC directly establishes an objective function to recover

the outputs of the compressed DNNs. In this way, the weight
parameters of the interlayer and intralayer relationship can be
compressed jointly without the tedious retraining procedure.
In addition, the global DNNs model generated by FDNNC is
generalized for other devices, and the new devices only need
to do a few times of training based on the global model to get
a well-performed model.

After the compression of the weight matrices of the FC
layers, the communication cost is reduced at a certain.
Considering that mobile devices typically have minimal upload
bandwidth or expensive connections, we further proposed
a communication-efficient federated optimation (CEFO), to
reduce the communication cost further. Different from the fed-
erated averaging algorithm [14], which sends all the updates
of each client to the server, CEFO only sends a part of the
updates of each client. In this way, not only communication
cost can be reduced but also update gradients can be protected
from exposure [15], [16].

Furthermore, previous work only considered the scenario
of running the compression DNNs model or original DNNs
model on all devices, but there is possible that devices in feder-
ated learning may run different models at the same time due to
system heterogeneity. At present, a lot of works have proposed
the issue of system heterogeneity [17]–[22], that is, the devices
in federated learning are heterogeneous, which vary in terms
of hardware (i.e., CPU and memory). For example, there are
some mobile devices with larger memory, such as intelligent
sensors or intelligent monitoring devices, which train together
based on the original DNNs model at the beginning. After
a while, a group of small mobile devices running the com-
pression DNNs model with limited storage resources join the
training process. However, the original large mobile devices
may not update the training model in time and still upload the
updates of the original DNNs model; or these large mobile
devices may not want to replace the model because they have
gained a well-performed original DNNs model. Therefore,
how to design a unified federated deep learning framework
for heterogeneous mobile devices is a challenging problem.
In this article, we present three different training patterns to
train the heterogeneous mobile devices running the original
DNNs model and the compression DNNs model at the same
time.

Our contributions can be summarized as follows.
1) To compact the DNNs model for resource-constrained

mobile devices, we replace each FC layer by two low-
rank projection matrices, and establish an objective
function of the global error to recover the outputs of
the compressed DNNs model. The proposed compres-
sion DNNs model compresses the weight parameters of
interlayer and intralayer relationship jointly, and greatly
reduces the number of parameters without significantly
reducing the prediction accuracy.

2) Based on the compression model, we propose a CEFO
approach, which only sends a part of the updates
of each client to the server. The mobile devices
in federated learning are typically large in number
and require significant communication bandwidth for
updates exchange. However, mobile devices frequently

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 07,2022 at 07:13:33 UTC from IEEE Xplore. Restrictions apply.

LI et al.: UNIFIED FEDERATED DNNs FRAMEWORK FOR HETEROGENEOUS MOBILE DEVICES 1739

have minimal upload bandwidth or expensive connec-
tions. In this way, not only communication cost can
be reduced further but also update gradients can be
protected from exposure.

3) Unlike previous studies that only consider the devices
running the same model, we present three different train-
ing patterns to train the heterogeneous mobile devices
running the original model and the compression model at
the same time. Due to variability in hardware (CPU and
memory), the storage memory of each device in feder-
ated learning may be heterogeneous. Furthermore, there
is a possibility that the heterogeneous devices run dif-
ferent models at the same time. To our best knowledge,
we are the first to integrate the heterogeneous devices
running different models in federated learning.

4) To evaluate the advantages of our framework, we take
convolutional neural networks (CNNs), one of the most
popular DNNs, as an instance. We conduct extensive
experiments on both independently identically distri-
bution (IID) and non-IID data sets. The experimental
results show that the proposed framework can signifi-
cantly reduce the number of parameters and communi-
cation cost while maintaining performance.

The remainder of this article is organized as follows.
Section II summarizes the related work. Section III introduces
the proposed framework. Section IV summarizes the experi-
mental results and analysis. Finally, Section V concludes the
article.

II. RELATED WORK

System Heterogeneity: Different from traditional distributed
machine learning, federated learning involves the participation
of an extremely large number of heterogeneous devices. The
participating devices vary in terms of hardware, such as com-
putation capabilities, storage, and memory. Yang et al. [23]
proposed that the low-end devices are the major reason
for client failure, which may have negative impacts on the
performance of federated learning. They suggested that the
federated learning platform should consider device hetero-
geneity that is ignored in existing platforms. Nishio and
Yonetani [18] proposed a client selection protocol to address
the training bottleneck of the devices with limited computa-
tional resources. Wang et al. [20] considered the computation
resource constraint, and proposed a control Algorithm to the
adaptive tradeoff between local update and global aggrega-
tion under a resource budget constraint. Nguyen et al. [21]
presented that the devices with limited resources and low
computation capacity may take more than one communication
block to complete one global round; thus, they formulated
a resource allocation problem of total energy consumption
and completion time. Kang et al. [19] proposed that the het-
erogeneous computation resource of devices leads to varying
resource cost; thus, it is necessary to design economic com-
pensation to stimulate devices to participate in model training.
Abdelmoniem and Canini [22] proposed an adaptive model
quantization federated learning method (AQFL), which can
reduce the degree of device heterogeneity by uniformizing the

computing resources of the clients. However, AQFL requires
the server to collect the clients’ computational profiles, which
is unrealistic under strict privacy constraints. Moreover, the
server has to customize the quantized model of each client, and
dequantizes the model updates of each client in each iteration.
In contrast, our framework is simpler and more practical, in
which the server does not need to initialize a different model
for each client, and the workload is much less than AQFL.

Model Compression: Some mobile devices have strict con-
straints in terms of memory capacity and storage. The deploy-
ment of DNN models on these devices is gaining more
and more attention [24]–[27]. Various optimization techniques
have been proposed to reduce the model size of deep learn-
ing on resource-constrained mobile devices, such as vector
quantization [28], hashing techniques [29], circulant projec-
tion [30], parameter pruning [31], and sparsity [32]. These
methods greatly reduced the model size without impacting the
effectiveness. However, these methods require additional defi-
nitions of new operations; thus, it is difficult to perform them
in federated learning. In addition to these methods, using low-
rank methods to compress deep learning has a long history.
Denton et al. [33] applied truncated singular value decompo-
sition (SVD) to compress the weight matrix of the FC layer.
Kim et al. [26], Novikov et al. [34], and Tai et al. [35] used
a tensor decomposition to approximate the parameters of the
pretrained weights and then fine-tuned them to compensate
for the performance loss. The above low-rank approaches only
considered approximating the parameters between compressed
weights with pretrained weights by minimizing their Euclidean
distance. This setting is indeed problematic for federated learn-
ing without pretrained weights. Konecný et al. [13] proposed a
low-rank structured updates approach, which directly learns an
update from a restricted space parameterized using a smaller
number of variables in federated learning. However, the struc-
tured updates approach requires generating predefined patterns
afresh in each round and for each client independently, so
resulting in low adaptive ability and efficiency.

Communication Efficiency: In federated learning, mobile
devices are required to exchange parameters with the cen-
tral server frequently, which leads to huge communication
overhead. Many effective communication methods have been
proposed to reduce the communication cost. For example,
McMahan et al. [14] focused on reducing the rounds of com-
munication, and proposed that clients should perform multiple
iterations locally to calculate the weight update instead of
communicating after every iteration. However, this requires
more complex calculations on the clients to evaluate gradients.
Xie et al. [36] proposed an asynchronous update strategy,
in which the central server does not need to wait for a
certain number of responding clients, as long as there are
updates sent by the client, the server can carry out aggrega-
tion. The asynchronous update strategy greatly reduces network
congestion, but it may reduce the convergence speed due to stal-
eness. Besides, gradient quantization and sparsification, which
reduce communication data size, are also extensively studied.
Seide et al. [37] used only 1-bit to represent the updates.
Wen et al. proposed TernGrad [9], which stochastically quan-
tizes gradients to ternary values. DoReFa-Net [38] quantizes

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 07,2022 at 07:13:33 UTC from IEEE Xplore. Restrictions apply.

1740 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 3, FEBRUARY 1, 2022

the weights with 1-bit and gradients with 2-bit. Strom [39]
presented a sparsification approach, which only sends gradient
updates that are greater than a certain predefined threshold to the
server. Instead of using a fixed threshold, Aji and Heafield [7]
used a fixed sparsity rate to communicate small subset parame-
ters with the biggest magnitude. These communication-efficient
approaches reduce the communication cost, but they do not con-
sider the resource-constrained problem of the mobile devices,
which make it impractical for the devices to run the excessive
model with millions and billions of parameters in the local
training process; thus, they are not applicable to the mobile
devices with limited memory.

III. METHOD

A. Preliminaries

We define a training batch X = [x1, x2, . . . , xn] ∈ R
d×n,

where d is the dimension of feature vectors, and n is the batch
size. The forward propagation of the lth FC layer in a DNNs
model can be written as

al = f
(

zl
)
, where zl = Wlal−1 + bl (1)

where the weight matrix Wl ∈ R
Ml×Nl

and the bias vector
bl ∈ R

Ml
define the transformation. The vectors z and a denote

the activation units before and after transformation, and f (·)
represents the transition function, such as sigmoid, tanh, and
ReLU.

When Ml and Nl are large, the memory cost is unafford-
able. An intuitive way is to compress Wl. The state-of-the-art
low-rank decomposition methods [40]–[42] only consider
approximating the pretrained parameters Wl with compressed
one Ŵl by minimizing their Euclidean distance ‖Wl − Ŵl‖2

F .
However, in federated learning, each device computes the
update gradients locally with their own data. It is indeed prob-
lematic to pretrain and perform parameters decomposition on
the federated scenario.

B. Compression DNNs Model

Denil et al. [40] showed that DNNs models are overpa-
rameterized, and the features can be learned given only a
small fraction of their parameters. The weights of the FC
layers dominate memory consumption, which reached the
memory limit with 89% [43] or even 100% [42]. Therefore,
an intuitive insight is to discover and discard the parameter
redundancy in FC layers while maintaining the performance.
In this section, we introduce a compression DNNs model
for resource-constrained mobile devices, which uses an SVD-
based low-rank decomposition to replace the original weight
matrix of the FC layer. Then, we establish an objective
function of the global error to recover the outputs of the com-
pressed DNNs model and adopt a stochastic gradient descent
to optimize the parameters. Fig. 2 shows the comparison
between the original DNNs model and the compression DNNs
model.

1) Low-Rank Decomposition: We first adopt SVD to
replace Wl with low-rank decomposition: USVT , where U ∈
R

Ml×r, V ∈ R
Nl×r, and S ∈ R

r×r (S is a diagonal matrix and

Fig. 2. Comparison between the original DNNs model and the compression
DNNs model. 1) In the original DNNs model, the weight matrices of the FC
layers dominates memory consumption. 2) In the compression DNNs model,
we use two low-rank projection matrices to replace the FC layers to compact
the DNNs model.

r is the SVD-rank). We obtain the low-rank decomposition of
Wl as AlBlT , where Al = US(1/2) and Bl = VS(1/2).

2) Forward Propagation: The forward propagation of the
lth layer in (1) can be can be rewritten as

al = f
(

zl
)
, where zl = AlBlTal−1 + bl. (2)

In particular, if the DNNs model has m fully connected layers,
the output of the last layer am is as follows:

am = f ◦
(

Am × BmT
)

◦ · · · ◦ f ◦
(

A1 × B1T
)

x

+ bm + · · · + b1. (3)

3) Backpropagation: Instead of minimizing the divergence
of Ŵl and Wl, much attention should be put on the predictions
of the model; thus, we try to minimize the global error of
‖y − am‖2

F to recover the outputs of the compressed DNNs
model, where y is the true label set of the training set.
Subsequently, we use the stochastic gradient descent to solve
the nonconvex optimization problem, and the compression
DNNs model is further jointly optimized among layers via
backpropagation. In this way, the proposed compression DNNs
model compresses the weight parameters of interlayer and
intralayer relationship jointly. The objective function can be
written as

min J
(

Al, BlT , bl
)

l=1···m
= 1

2

∥∥y − am
∥∥2

F. (4)

The error signals of the objective function can be calcu-
lated as

δl =
⎧⎨
⎩

∂J
∂al � f ′(zl

)
, l = m(

Al+1Bl+1T
)T

δl+1 � f ′(zl
)
, otherwise

(5)

where � indicates elementwise multiplication.
The gradient of the objective function with respect to all

parameters (Al, BlT , bl for all layers) is calculated as

∂J

∂Al
= δl

(
al−1

)T
Bl,

∂J

∂BlT
= AlTδl

(
al−1

)T
,

∂J

∂bl
= δl. (6)

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 07,2022 at 07:13:33 UTC from IEEE Xplore. Restrictions apply.

LI et al.: UNIFIED FEDERATED DNNs FRAMEWORK FOR HETEROGENEOUS MOBILE DEVICES 1741

TABLE I
COMPARISON OF THE MEMORY USAGE OF

SVD-FC LAYER AND FC LAYER

The gradients in (6) are used to update the parameters. At
the kth iteration, the new parameters are as follows:

Al
k+1 = Ak

l + αk
∂J

∂Al

BlT
k+1 = Bl

k
T + αk

∂J

∂BlT

bl
k+1 = bl

k + αk
∂J

∂bl
(7)

where α is the learning rate.
We summarize the comparison of the memory usage of

the SVD FC layer (SVD-FC) and the original FC layer in
Table I. When r ≺ min(Ml, Nl), our method would greatly
reduce the number of parameters of the FC layers. In addition,
the compression DNNs model has the following important
advantages.

1) Ease of Implementation: SVD, as one of the
standard tools in matrix decomposition, is easy to imple-
ment. The decomposition of FC layers is easy to insert
into a DNN learning process.

2) Ease of Fine-Tuning: Once the FC layers are
compressed, it is straightforward to fine-tune the entire
network using backpropagation.

C. Communication-Efficient Federated Optimation

Communication is a key bottleneck in federated learning.
On the one hand, mobile devices in federated learning are typ-
ically large in number and frequently exchange the parameters
with the remote server, which requires an enormous amount
of network bandwidth. However, the network bandwidth of
the server is usually restricted and shared among all running
devices, which leads to a vast communication overhead. On
the other hand, mobile devices frequently have narrow upload
bandwidth or expensive connections. The uplink is typically
slow, and all the devices need to wait for the slowest one in
each synchronous round.

After the compression of the weight matrices of the FC
layers, the size of the messages communicated at each round
of the lth FC layer is reduced from MlNl to (Ml + Nl) × r.
However, for the mobile devices that have narrow upload band-
width, there is much room to be improved. As shown in Fig. 3,
we propose a CEFO approach to reduce the communication
cost further.

The kth iteration consists of the following steps.
1) Model Selection at Clients: A subset of existing clients

(the number of clients included in the subset is c, and

Fig. 3. CEFO: the devices running the compression DNNs model obtain
two low-rank weight matrices in each FC layer. Different from the previous
works, which send all the two weight matrices to the server, half of the clients
send a low-rank weight matrix, and the other half send another weight matrix
to the server.

c 	 0) is selected, each of which downloads the current
weight matrices of the global model from the server.
The weight matrices covering all layers are denoted as
Ak, BT

k, and bk

Ak =
[
Am

k , Am−1
k , . . . , A1

k

]
(8)

Bk
T =

[
Bm

k
T
, Bm−1

k
T
, . . . , B1

k
T
]

(9)

bk =
[
bm

k , bm−1
k , . . . , b1

k

]
. (10)

2) Local Gradients Updates: Each client in the subset com-
putes the gradient GAk , GBT k , and Gbk of the weight
matrices Ak, BT

k, and bk for one minibatch of their local
data

GAk =
[
g
(
Am

k

)
, g

(
Am−1

k

)
· · · g

(
A1

k

)]
(11)

GBT
k

=
[
g
(

Bm
k

T
)
, g

(
Bm−1

k
T
)

· · · g
(

B1
k

T
)]

(12)

Gbk =
[
g
(
bm

k

)
, g

(
bm−1

k

)
· · · g

(
b1

k

)]
. (13)

Different from the previous works, which require to send
all the updates GAk , GBT k , and Gbk to the server, we ran-
domly select half of clients to send GAk and Gbk , and
the other half send GBT k and Gbk to the server. In this
way, not only communication cost of the lth FC layer
can be reduced to (Ml + Nl) × r/2 but also the gradient
updates can be protected from exposure, as the server
only has a part of the gradient updates.

3) Federated Averaging: The server aggregates the gradient
updates GAk , GBT k , and Gbk of the selected clients, and
averages them as

GAk = 1

i

(
GAk

(1) + GAk
(2) + · · · + GAk

(i)
)

(14)

GT
Bk

= 1

c − i

(
GT

Bk

(i+1) + GT
Bk

(i+2) + · · · + GT
Bk

(c)
)

(15)

Gbk = 1

c

(
Gbk

(1) + Gbk
(2) + · · · + Gbk

(c)
)

(16)

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 07,2022 at 07:13:33 UTC from IEEE Xplore. Restrictions apply.

1742 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 3, FEBRUARY 1, 2022

where (i) represents the ith client. Then, the gradient
updates are used to update the parameters as follows:

Al
k+1 = Al

k + αkGl
Ak

(17)

Bl
k+1

T = BlT
k + αkGl

Bk

T
(18)

bl
k+1 = bl

k + αkGl
bk

. (19)

D. Training Patterns

Due to system heterogeneity, the storage memory of each
device in federated learning may differ. Some mobile devices
have enough memory to train complex DNN models, while
other mobile devices have strict constraints in terms of
memory capacity. Furthermore, there is a possibility that
devices in federated learning run different models at the same
time. For example, we assume that all the mobile devices
perform the original DNNs model initially. As resources are
occupied more and more by other programs, some devices
cannot continue to train the complex DNNs, so they replace
the original model with the compression one. Meanwhile, a
group of small mobile devices running the compression DNNs
model with limited storage resources join the training pro-
cess. However, some of the original large mobile devices
may not update the training model in time or do not want
to replace the model as they have gained a well-performed
original DNNs model; thus, they still upload the updates of
the original DNNs model. Therefore, how to design a unified
federated deep learning framework for heterogeneous mobile
devices is a challenging problem. We call the devices that
are running the original model and the compression one as
big devices and small devices, respectively. We present three
training patterns in our framework, synchronized pattern, pre-
train fine-tuning pattern, and alternative pattern, to integrate
the heterogeneous devices running different models. The three
patterns are introduced as follows.

1) Synchronized Pattern: The original model and the com-
pression model train together synchronously. A typical round
of federated learning in synchronized pattern consists of the
following steps.

1) Local Training: In each iteration, each big device
and each small device simultaneously computes the
weight matrix W and the low-rank weight matrices A
and B, respectively. Then, the big devices send their W
to the server (Fig. 4 1), and the small devices send their
A and B to the server synchronously (Fig. 4 6).

2) Server Process: The server computes W+ = (A×
B+W)/2 (Fig. 4 4), and then decomposes W+ into A+
and B+ (Fig. 4 3).

3) Update Weight Matrix: Small devices download
A+ and B+ from the server (Fig. 4 5), and big devices
get W+ from the server (Fig. 4 2).

This is an intuitive way for federated learning; however, the
decomposition of the original model may lose information,
thus leading to great drop-in accuracy.

2) Pretrained Fine-Tuning Pattern: The previous works
usually use decomposition to approximate the parameters of
the pretrained weights and then fine-tune to compensate for

the performance loss. According to this idea, we present a
pretrained fine-tuning pattern. The process of the pretrained
fine-tuning pattern is as follows.

1) Pretraining on Big Devices: In each
iteration, each big device computes its update matrices
W and sends to the server (Fig. 4 1). The server
aggregates these updates, averages them, and sends
back the global improved weight matrix W+ to big
devices for the next iteration (Fig. 4 2). After some
loops of (Fig. 4 1) and (Fig. 4 2), we obtain the global
weight W+.

2) Server Process: The server decomposes the pre-
trained weight matrix W+ into two lower dimensional
matrices A+ and B+ (Fig. 4 3), and then sends them to
the small devices (Fig. 4 5).

3) Fine-Tuning on Small Devices: Small
devices fine-tune the weight matrices in federated
manner to obtain two global weight matrices A+
and B+.

4) Update Weight Matrix: The server computes
W+ = A+ × B+ (Fig. 4 4), and the big devices get
W+ from the server (Fig. 4 2).

3) Alternative Pattern: In alternative pattern, at each
iteration, big devices train a global weight matrix first, and
then each small devices computes their updates based on the
decomposition of the global weight matrix trained by the big
devices from the previous round. The process of the alternative
pattern is as follows.

1) Local Training on Big Devices: In each
iteration, each big device computes its weight matrix
W and sends it to the server (Fig. 4 1).

2) Server Decomposition: The server averages the
weight matrices to obtain a global weight matrix W+,
and then decomposes W+ to A+ and B+ (Fig. 4 3).

3) Local Training on Small Devices: The
small devices download A+ and B+ from the server
(Fig. 4 5), and compute their gradient updates A and
B on their local data, and send them to the server
(Fig. 4 6).

4) Server Composition: The server averages A and
B of all small devices to get matrices A+ and B+, and
then computes W+ = A+ × B+ (Fig. 4 4).

5) Update Weight Matrix: The big devices down-
load W+ for the next iteration.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we introduce the real-world data sets and
report our experimental results.

A. Data Sets

We employ two image classification data sets for the
proposed framework, one is the CIFAR-10 data set [44], which
is IID, balanced, and have been widely used in DNNs research.
The other is federated extended MNIST (FEMNIST) [45],
which is non-IID, unbalanced, and large-scale, built by parti-
tioning the data in Extended MNIST [46] based on the writer
of the digits, lowercase, and uppercase letters.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 07,2022 at 07:13:33 UTC from IEEE Xplore. Restrictions apply.

LI et al.: UNIFIED FEDERATED DNNs FRAMEWORK FOR HETEROGENEOUS MOBILE DEVICES 1743

Fig. 4. Process of training pattern: Different training patterns have different processes. The process of the synchronized pattern is 1 6 → 4 → 3 → 5 2 ;
the process of the pretrained fine-tuning pattern is 1 → 2 → 1 → 2 → · · · → 1 → 2 → 3 → 5 → 6 → 5 → 6 → · · · → 5 → 6 → 4 →
2 ; and the process of the alternative pattern is 1 → 3 → 5 → 6 → 4 → 2 .

TABLE II
STATISTICS OF DATA SETS

1) CIFAR-10 Data~Set: The data set consists of ten
classes of 32 × 32 images with three RGB channels.
There are 50 000 training examples and 10 000 testing
examples. We shuffle and partition the training set into
200 subsets, representing 200 clients, while the testing
set is globally shared.

2) FEMNIST Data~Set: The data set consists of 62
different classes (10 digits, 26 lowercase, and 26 upper-
case), and images are 28 by 28 pixels. We generate 900
clients from FEMNIST for training, and randomly select
10 000 images as the testing set. The amount of local
training data typically varies across devices. Besides,
the local data of any device cannot be regarded as a
representative sample of the overall distribution.

The statistics of these data sets are listed in Table II.

B. Compared Methods

Training Patterns: In this article, we present three differ-
ent patterns to train the heterogeneous mobile devices in
Section III-D.

1) BOTH: Our synchronized pattern mentioned in
Section III-D1 is named BOTH. In each iteration, the
original model and the compression model are updated
synchronously.

2) BFIRST: Our pretrained fine-tuning pattern mentioned
in Section III-D2 is named BFIRST . The big devices
pretrain a model collaboratively through multiple itera-
tions. Then, the small devices fine-tune the pretrained
model.

3) SWITCH: Our alternative pattern mentioned in
Section III-D3 is named SWITCH. In each iteration,
each big device computes its updates first, and then
each small device computes its updates based on the
updates of the big devices from the previous round.

Federated Upload Pattern: We proposed a novel CEFO
approach to reduce the communication cost further for the
small devices in Section III-C. We consider the following two
upload patterns to compare.

1) FULL:The small-devices send all their updates to the
server in each iteration.

2) HALF: Different from FULL, half of the small-devices
send GAk and Gbk , and the rest send GBT

k
, Gbk to the

server at iteration k.
Systems Heterogeneity: Due to system heterogeneity,

there is a possibility that devices in federated learning
run different models at the same time. We simulate the
coexistence of the two models in a real-world scenario
by adjusting the proportion of big devices. We set the
proportion of big devices to be {0.0, 0.2, 0.5, 0.7, 1.0},
respectively. We represent our method in the following form:
〈big-devices proportion〉-〈training pattern 〉-〈upload pattern 〉.
For example, the method 1.0-BOTH-FULL means that the
federated learning system consists of 100% big devices,
the devices train in the BOTH pattern, and use the FULL
federated upload pattern. 1.0-BOTH-FULL is the same as the
federated averaging algorithm [14], so we will take it as a
baseline method.

C. Experimental Results

To evaluate the advantages of our framework, we take
CNNs, one of the most popular DNNs, as an instance. We
deploy experiments on a widely used CNNs, AlexNet [47],
which contains five convolutional layers and three FC lay-
ers. For other DNNs, which include FC layers, such as
VGGNet [48], our proposed method is also workable.

In each iteration, we randomly sample 10% big devices and
10% small devices to participate in the training. It simulates

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 07,2022 at 07:13:33 UTC from IEEE Xplore. Restrictions apply.

1744 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 3, FEBRUARY 1, 2022

Fig. 5. Results on CIFAR-10 data set. (a)–(f) Convergence speed in terms of iterations, and (g) convergence speed in terms of the total number of uploaded
parameters. “Testing on Big-Devices” and “Testing on Small-Devices” represent the testing results on big-devices and small-devices separately. p represents
the proportion of big devices.

the real-world situation that devices will only participate in a
small number of update rounds per day due to the limitation
of battery and network. In such settings, the learning process
would utilize the data of only a small number of devices per
round. Thus, applying federated learning is possible without
affecting the user experience.

From a general view, Figs. 5 and 6 show results on the
CIFAR-10 and FMINIST data sets, respectively. Figs. 5(a)–(f)
and 6(a)–(f) show convergence speed in terms of itera-
tions, while Figs. 5(g) and 6(g) show convergence speed in
terms of the total number of uploaded parameters. The fig-
ures of “Testing on Big Devices” and “Testing on Small
Devices” show the testing results on big devices and small
devices separately. For 1.0-BOTH-FULL, due to the lack
of the compression model, the original model needs to be
decomposed into lower dimensional models so that it can
be deployed on small devices for testing. On the contrary,
for 0.0-BOTH-FULL and 0.0-BOTH-HALF, the compression

model should be composed for testing on big devices. In
the following, we will analyze the impact of the compres-
sion model, training patterns, federated upload patterns, and
the proportion of big devices on the performance of our
framework.

1) Compression Mode Versus Original Model: We first
focus on the comparison between pure original mode (denoted
as 1.0-BOTH-FULL) and pure compression mode (denoted
as 0.0-BOTH-FULL). The goal of compression mode is to
address the resource-constrained issues of small devices while
maintaining the model’s performance. In Fig. 5(a) and (d), we
observe that the prediction accuracy of 0.0-BOTH-FULL is
almost closed to 1.0-BOTH-FULL when testing on CIFAR-10.
Fig. 6(d) also shows that 0.0-BOTH-FULL has little or no drop
in accuracy on small devices compared with 1.0-BOTH-FULL
when testing on the FEMNIST data set. Furthermore,
Fig. 6(a) shows that 0.0-BOTH-FULL can achieve a higher
accuracy compared to 0.0-BOTH-FULL when testing on

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 07,2022 at 07:13:33 UTC from IEEE Xplore. Restrictions apply.

LI et al.: UNIFIED FEDERATED DNNs FRAMEWORK FOR HETEROGENEOUS MOBILE DEVICES 1745

Fig. 6. Results on FEMNIST data set. (a)–(f) Convergence speed in terms of iterations, and (g) convergence speed in terms of the total number of uploaded
parameters. “Testing on Big-Devices” and “Testing on Small-Devices” represent the testing results on big devices and small devices separately. p represents
the proportion of big devices.

big devices. This is because the redundancy of parame-
ters in 1.0-BOTH-FULL leads to overfitting when testing
on the federated scenario, which contains non-IID, unbal-
anced, and large-scale data. Our proposed compression model
(0.0-BOTH-FULL) is more suitable for the federated tasks.
In addition, in Figs. 5(g) and 6(g), we observe that the com-
pression model can achieve significant reductions in network
communication cost on both CIFAR-10 and FEMNIST.

Overall, the experimental results show that the compres-
sion approach can achieve significant reductions in model size
without any accuracy loss and can even improve accuracy in
the federated data set. Practically, this reduction in the num-
ber of parameters is important for mobile devices with limited
storage memory.

2) HALF Versus FULL: Then, we compare the two fed-
erated upload patterns. From Figs. 5(a)–(f) and 6(a)–(f), the
lines of the HALF methods and the FULL methods of the
same training pattern roughly coincide; thus, it is clear that

the HALF methods can obtain the same accuracy as the FULL
methods and even outperform the FULL methods without
a drop in convergence. Besides, Figs. 5(g) and 6(g) show
that the HALF methods can reduce the communication cost
further than the FULL methods within the same training
pattern.

In summary, CEFO can reduce the communication cost
further with little or no drop in accuracy and convergence.
This attribute is beneficial for federated learning as not only
communication cost can be reduced further but also update
gradients can be protected from exposure.

3) SWITCH Versus BOTH BFIRST: We compare three dif-
ferent training patterns. From Figs. 5 and 6, we observe
that the performances of the 0.2-BOTH, 0.4-BOTH, and
0.7-BOTH patterns are poor. This is because the decompo-
sition loss happens at every iteration, and cause a serious
drop in accuracy. Also, we observe that the BFIRST pattern
and SWITCH pattern achieve relatively better performance.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 07,2022 at 07:13:33 UTC from IEEE Xplore. Restrictions apply.

1746 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 3, FEBRUARY 1, 2022

TABLE III
ACCURACY ON CIFAR-10 DATA SET

TABLE IV
ACCURACY ON FEMNIST DATA SET

From the figures of “Testing on Big Devices,” there is a
leap around the 400th epoch of the line of BFIRST pat-
tern. This leap explains that the performance can be improved
rapidly via the fine-tuning of the compression model. Besides,
from Figs. 5(g) and 6(g), the SWITCH pattern reduces
the communication cost on both CIFAR-10 and FEMNIST
significantly.

In a word, among these three patterns, SWITCH
achieves communication efficiency and effectiveness
superiority.

4) Proportion of Big Devices: In this section, we discuss
the influence of the proportion of big devices. We display
the accuracy of different methods under various proportions
of big devices in Tables III and IV for two data sets. First,
we observe that our methods BFIRST-FULL, BFIRST-HALF,
SWITCH-FULL, and SWITCH-HALF are efficient under all
the proportion of big devices. If a mobile device replaces
its original model with the compression model, the federated
learning framework will continue to operate steadily without
significantly reducing the prediction accuracy. In such settings,
we can gradually replace the original model in the federated
framework with the compression model. Alternatively, leave
the original model unchanged and let the new devices added
to the framework run the compression model.

V. CONCLUSION AND FUTUREWORK

Federated learning on mobile devices is not a trivial task,
which has three significant challenges: 1) resource con-
strained; 2) high communication overhead; and 3) systems

heterogeneity. To address these challenges, we propose a uni-
fied DNNs federated framework. First, we present a compres-
sion DNNs model for resource-constrained mobile devices,
which uses a low-rank representation of the weight matri-
ces of the FC layers. Second, we propose a novel CEFO
approach, which only sends a part of the updates of each
client to the server. Third, we present three different patterns
to federated train the heterogeneous mobile devices. We test
the performance of the proposed framework on CIFAR-10
and FEMNIST, and the experimental results show that our
framework can achieve significant effectiveness. To our best
knowledge, we are the first to integrate the heterogeneous
devices running different models in federated learning. Under
any proportion of different models, our federated learning
framework will operate steadily without significantly reducing
the prediction accuracy.

REFERENCES

[1] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and M. Guizani,
“Reliable federated learning for mobile networks,” IEEE Wireless
Commun., vol. 27, no. 2, pp. 72–80, Apr. 2020.

[2] J. Konečný, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
2016. [Online]. Available: https://arxiv.org/abs/1610.02527.

[3] J. Konečný, “Stochastic, distributed and federated
optimization for machine learning,” 2017. [Online]. Available:
http://arxiv.org/abs/1707.01155.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, 2017.

[5] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Proc. 13th Eur. Conf. Comput. Vis. (ECCV), Zurich,
Switzerland, Sep. 2014, pp. 818–833.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 07,2022 at 07:13:33 UTC from IEEE Xplore. Restrictions apply.

LI et al.: UNIFIED FEDERATED DNNs FRAMEWORK FOR HETEROGENEOUS MOBILE DEVICES 1747

[6] X. Xu et al., “Scaling for edge inference of deep neural networks,” Nat.
Electron., vol. 1, no. 4, pp. 216–222, 2018.

[7] A. F. Aji and K. Heafield, “Sparse communication for distributed gra-
dient descent,” in Proc. Conf. Empir. Methods Nat. Lang. Process.
(EMNLP), Copenhagen, Denmark, Sep. 2017, pp. 440–445.

[8] Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” in Proc. 6th Int. Conf. Learn. Represent. (ICLR), Vancouver,
BC, Canada, 2018, pp. 1–14.

[9] W. Wen et al., “Terngrad: Ternary gradients to reduce communication in
distributed deep learning,” in Proc. 31st Annu. Conf. Neural Inf. Process.
Syst., Long Beach, CA, USA, Dec. 2017, pp. 1509–1519.

[10] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” 2015. [Online]. Available: arXiv:1510.00149.

[11] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Salt Lake City,
UT, USA, Jun. 2018, pp. 4510–4520.

[12] N. Ma, X. Zhang, H. Zheng, and J. Sun, “ShuffleNet V2: Practical
guidelines for efficient CNN architecture design,” in Proc. 15th Eur.
Conf. Comput. Vis. (ECCV), Munich, Germany, 2018, pp. 122–138.

[13] J. Konecný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” 2016. [Online]. Available: https://arxiv.org/abs/1610.05492.

[14] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Proc. 20th Int. Conf. Artif. Intell. Stat. (AISTATS), Fort
Lauderdale, FL, USA, Apr. 2017, pp. 1273–1282.

[15] D. Chai, L. Wang, K. Chen, and Q. Yang, “Secure federated matrix fac-
torization,” 2019. [Online]. Available: https://arxiv.org/abs/1906.05108.

[16] K. Bonawitz et al., “Practical secure aggregation for privacy-preserving
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Security (CCS), Dallas, TX, USA, 2017, pp. 1175–1191.

[17] W. Y. B. Lim et al., “Federated learning in mobile edge networks: A
comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 2031–2063, 3rd Quart., 2020.

[18] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in Proc. IEEE Int. Conf.
Commun. (ICC), Shanghai, China, May 2019, pp. 1–7.

[19] J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang, “Incentive mech-
anism for reliable federated learning: A joint optimization approach
to combining reputation and contract theory,” IEEE Internet Things J.,
vol. 6, no. 6, pp. 10700–10714, Dec. 2019.

[20] S. Wang et al., “Adaptive federated learning in resource constrained
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6,
pp. 1205–1221, Jun. 2019.

[21] V.-D. Nguyen, S. K. Sharma, T. X. Vu, S. Chatzinotas, and
B. E. Ottersten, “Efficient federated learning Algorithm for resource
allocation in wireless IoT networks,” IEEE Internet Things J., vol. 8,
no. 5, pp. 3394–3409, Mar. 2021.

[22] A. M. Abdelmoniem and M. Canini, “Towards mitigating device hetero-
geneity in federated learning via adaptive model quantization,” in Proc.
1st Workshop Mach. Learn. Syst. Virtual Event (EuroMLSysEuroSys),
Edinburgh, U.K., Apr. 2021, pp. 96–103.

[23] C. Yang, Q. Wang, M. Xu, S. Wang, K. Bian, and X. Liu,
“Characterizing impacts of heterogeneity in federated learning
upon large-scale smartphone data,” 2020. [Online]. Available:
https://arxiv.org/abs/2006.06983.

[24] H. Lan et al., “FeatherCNN: Fast inference computation with
TensorgEMM on ARM architectures,” IEEE Trans. Parallel Distrib.
Syst., vol. 31, no. 3, pp. 580–594, Mar. 2020.

[25] M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu, “A first look at
deep learning apps on smartphones,” in Proc. World Wide Web Conf.
(WWW), San Francisco, CA, USA, May 2019, pp. 2125–2136.

[26] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression
of deep convolutional neural networks for fast and low power mobile
applications,” in Proc. 4th Int. Conf. Learn. Represent. (ICLR), San Juan,
Puerto Rico, May 2016, pp. 1–16.

[27] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017. [Online]. Available:
https://arxiv.org/abs/1704.04861.

[28] Y. Gong, L. Liu, M. Yang, and L. D. Bourdev, “Compressing deep
convolutional networks using vector quantization,” 2014. [Online].
Available: https://arxiv.org/abs/1412.6115.

[29] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen,
“Compressing neural networks with the hashing trick,” in Proc. 32nd Int.
Conf. Mach. Learn. (ICML), Lille, France, Jul. 2015, pp. 2285–2294.

[30] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. N. Choudhary, and
S. Chang, “Fast neural networks with circulant projections,” 2015.
[Online]. Available: arXiv:1502.03436.

[31] S. Srinivas and R. V. Babu, “Data-free parameter pruning for deep neural
networks,” in Proc. Brit. Mach. Vis. Conf. (BMVC), Swansea, U.K.,
Sep. 2015, pp. 1–12.

[32] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured spar-
sity in deep neural networks,” in Proc. Annu. Conf. Neural Inf. Process.
Syst., Barcelona, Spain, Dec. 2016, pp. 2074–2082.

[33] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for efficient
evaluation,” in Proc. Annu. Conf. Neural Inf. Process. Syst., Montreal,
QC, Canada, Dec. 2014, pp. 1269–1277.

[34] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensorizing
neural networks,” in Proc. Annu. Conf. Neural Inf. Process. Syst.,
Montreal, QC, Canada, Dec. 2015, pp. 442–450.

[35] C. Tai, T. Xiao, X. Wang, and W. E, “Convolutional neural networks
with low-rank regularization,” in Proc. 4th Int. Conf. Learn. Represent.
(ICLR), San Juan, Puerto Rico, May 2016, pp. 1–11.

[36] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
2019. [Online]. Available: http://arxiv.org/abs/1903.03934.

[37] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gra-
dient descent and application to data-parallel distributed training of
speech DNNs,” in Proc. 15th Annu. Conf. Int. Speech Commun. Assoc.
(INTERSPEECH), Singapore, Sep. 2014, pp. 1058–1062.

[38] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, “DoReFa-Net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” 2016. [Online]. Available: https://arxiv.org/abs/1606.06160.

[39] N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” in Proc. 16th Annu. Conf. Int. Speech Commun.
Assoc. (INTERSPEECH), Dresden, Germany, Sep. 2015, pp. 1488–1492.

[40] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. de Freitas,
“Predicting parameters in deep learning,” in Proc. 27th Annu. Conf.
Neural Inf. Process. Syst., Dec. 2013, pp. 2148–2156.

[41] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and
B. Ramabhadran, “Low-rank matrix factorization for deep neural
network training with high-dimensional output targets,” in Proc. IEEE
Int. Conf. Acoust. Speech Signal Process. (ICASSP), Vancouver, BC,
Canada, May 2013, pp. 6655–6659.

[42] J. Xue, J. Li, and Y. Gong, “Restructuring of deep neural network
acoustic models with singular value decomposition,” in Proc. 14th Annu.
Conf. Int. Speech Commun. Assoc. (INTERSPEECH), Lyon, France,
Aug. 2013, pp. 2365–2369.

[43] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. 3rd Int. Conf. Learn. Represent.
(ICLR), San Diego, CA, USA, May 2015, pp. 1–14.

[44] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada,
Rep. TR-2009, 2009.

[45] S. Caldas et al., “LEAF: A benchmark for federated settings,” 2018.
[Online]. Available: https://arxiv.org/abs/1812.01097.

[46] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EMNIST: An
extension of MNIST to handwritten letters,” 2017. [Online]. Available:
https://arxiv.org/abs/1702.05373.

[47] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. 26th Annu. Conf.
Neural Inf. Process. Syst., Dec. 2012, pp. 1106–1114.

[48] L. Wang, S. Guo, W. Huang, and Y. Qiao, “Places205-VGGNet
models for scene recognition,” 2015. [Online]. Available:
https://arxiv.org/abs/1508.01667.

Xiaoli Li (Student Member, IEEE) received the
master’s degree in computer architecture from the
University of Electronic Science and Technology
of China, Chengdou, China, in 2011. She is cur-
rently pursuing the Ph.D. degree with the School
of Computer Science and Engineering, Sun Yat-sen
University, Guangzhou, China.

Her research interests include services computing,
software engineering, cloud computing, machine
learning, and federated learning.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 07,2022 at 07:13:33 UTC from IEEE Xplore. Restrictions apply.

1748 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 3, FEBRUARY 1, 2022

Yuzheng Li received the B.E. degree from the
Sun Yat-sen University, Guangdong, China, in 2018,
where he is currently pursuing the M.S. degree.

His current research interests include federated
learning, blockchain, statistical machine learning,
multiview learning, and optimization.

Shixuan Li received the bachelor’s degree in
network engineering from Sun Yat-sen University,
Guangzhou, China, in 2019, where she is currently
pursuing the master’s degree with the School of
Computer Science and Engineering.

Her research interests include machine learning,
federated learning, and software engineering.

Yuren Zhou (Member, IEEE) received the B.Sc.
degree in mathematics from Peking University,
Beijing, China, in 1988, and the M.Sc. degree in
mathematics and the Ph.D. degree in computer sci-
ence from Wuhan University, Wuhan, China, in 1991
and 2003, respectively.

He is currently a Professor with the School of
Computer Science and Engineering, Sun Yat-sen
University, Guangzhou, China. His current research
interests include design and analysis of algorithms,
evolutionary computation, and social networks.

Chuan Chen (Member, IEEE) received the B.S.
degree from Sun Yat-sen University, Guangzhou,
China, in 2012, and the Ph.D. degree from Hong
Kong Baptist University, Hong Kong, in 2016.

He is currently an Associate Professor with the
School of Computer Science and Engineering, Sun
Yat-sen University. He published over 50 interna-
tional journal and conference papers. His current
research interests include machine learning, numer-
ical linear algebra, and numerical optimization.

Zibin Zheng (Senior Member, IEEE) received the
Ph.D. degree from the Chinese University of Hong
Kong, Hong Kong, in 2011.

He is currently a Professor with the School of
Computer Science and Engineering, Sun Yat-sen
University, Guangzhou, China. He has published
over 150 international journal and conference
papers, including three ESI highly cited papers.
According to Google Scholar, his papers have more
than 13 590 citations, with an H-index of 54. His
research interests include blockchain, smart contract,

services computing, and software reliability.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 07,2022 at 07:13:33 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

