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a b s t r a c t

Contemporary datasets are often comprised of multiple views of data, which provide complete
and complementary information in different views, and multi-view clustering is one of the most
crucial techniques in multi-view data analysis. However, traditional multi-view clustering methods
are sensitive to noises and outliers, suffering from severe performance degradation when the dataset
contains many outliers. Moreover, the commonly used multi-view clustering methods are restricted by
high time complexity. To address these problems, we propose a robust multi-view k-means algorithm
with outlier detection, i.e., Multi-View Clustering with Outlier Removal (MVCOR). This method is
designed to remove the outliers and thus boosts the clustering performance on multi-view data with
low time complexity. By defining two types of outliers, MVCOR uses the well-defined outlier removal
strategy to categorize all the outliers into two specific clusters and performs robust clustering on
the clean data at the same time. This strategy significantly improves the clustering performance as
well as the model robustness, making MVCOR a more practical approach for real-world scenarios.
Besides, the proposed model is efficiently optimized by a well-designed alternating minimization
algorithm which is strictly proved to be convergent. Extensive experiments on both synthetic and
real-world datasets demonstrate that MVCOR consistently outperforms the related clustering methods
on clustering performance as well as robustness to outliers, and achieves comparable performance to
the state-of-the-art multi-view outlier detection methods.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Multi-view data is usually represented by different hetero-
eneous but related groups of features, where each group of
eatures, or each view, is collected from diverse sources or ob-
ained from various domains. For example, as shown in Fig. 1(a),
ultiple cameras focus on the same object from different angles,
nd the photos provided by different cameras are seen as differ-
nt views. Another example is Fig. 1(b), on the web page, an item
s described by the corresponding web image and its description,
hich provide visual and textual information respectively. For
hese scenarios, any particular single-view features cannot com-
rehensively describe the instance [1], so it is essential to take
ull advantage of the abundant information in multi-view data.
owever, if we just crudely concatenate all views of data and
hen use the single-view algorithm to process them, the statistical
haracteristics in each view and the relations among all views
ill be ignored [2], and the clustering performance may not even

∗ Corresponding author at: School of Data and Computer Science, Sun Yat-sen
niversity, Guangzhou, China.

E-mail addresses: chenchuan@mail.sysu.edu.cn (C. Chen),
angy475@mail2.sysu.edu.cn (Y. Wang), huwb7@mail2.sysu.edu.cn (W. Hu),
hzibin@mail.sysu.edu.cn (Z. Zheng).
ttps://doi.org/10.1016/j.knosys.2020.106518
950-7051/© 2020 Elsevier B.V. All rights reserved.
be improved since the multiple views may come from different
representation spaces [3,4] or some of the views contain noisy or
irrelevant information [5]. To fully utilize the multi-view data, we
regard each view as particular information and process them by
an appropriate multi-view algorithm which integrates different
data representations without losing data information [6].

In recent years, several promising multi-view clustering meth-
ods have been proposed. Among them, the graph-based method
is representative and often performs well by utilizing data graph
and manifold information [7,8]. However, the graph-based
method suffers from high time complexity due to the affinity
graph construction and eigen-decomposition [9], and it is also
often difficult to interpret [10]. On the one hand, most existing
methods, e.g., subspace clustering, which performs graph learning
and spectral clustering separately [11], face the same problem. On
the other hand, the performance of many traditional multi-view
clustering methods is easily affected by outliers or noise [12,13].
Such drawbacks make it difficult to apply these methods to some
real-world scenarios, and there are many variants try to fix it. To
avoid the high time complexity, many methods consider adopting
the k-means algorithm to perform clustering due to its simplicity
and effectiveness [14,15], so these methods can be used to pro-
cessing the large-scale data [16]. Moreover, the k-means based
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Fig. 1. Examples of multi-view data: (a) photos of the same dog taken from
different viewpoints; (b) web image and its description which both completely
describe an item. Each one of these data is regarded as a complementary view.

Fig. 2. Two types of multi-view outliers in two-view scenario: The attribute-
utlier (circle) is remote from the other points in both views; The class-outlier
star) is classified as the square in the first view but as the triangle in the second
iew.

ethods are easily processed in a parallel programming frame-
ork (e.g. MapReduce [17]), which optimizes the algorithms for
istributed computational environment [18]. Many multi-view k-
eans methods [16,19–23] bring these advantages into various
reas such as image segmentation [24,25], text clustering [26],
ocument image analysis [27], color quantization [28], collabora-
ive filtering [29], etc. There are two commonly used techniques
o satisfy the robustness of clustering. One is using the specific
orm to weaken the influence of outliers [16,30] and the other is
sing the outliers removal strategy to eliminate it [12,31]. Using
he specific norm is the commonly used technique because of its
impleness, and using the outliers removal strategy seems to be
ore well-performing.
Different from the single view scenarios, multi-view outliers

re a lot worth of study and even the definition of outliers has
een discussed for a long term. In single-view data, the outlier
s defined as a data point that deviates too much from other
ata points [32]. But in multi-view data, such a definition may
o longer be appropriate, because an instance may exhibit incon-
istent behavior across different views [33–35], i.e., the instance
s assigned to different clusters for different views. Following [33,
6,37], two types of outliers for multi-view data are considered in
his paper: (1) Attribute-outliers are those far away from others in
ost views, like the red circle in Fig. 2. (2) Class-outliers are those
howing inconsistent characteristics, like the red star in Fig. 2.
However, most of the robust multi-view clustering methods

nly weaken the influence of Attribute-outliers by using the L2,1-
norm mentioned below, and no multi-view clustering methods
can remove class-outliers, so they naturally have disadvantages
in the dataset with larger noise ratio and more complex out-
lier form. In this paper, we propose a novel robust multi-view
k-means method called Multi-View Clustering with Outlier Re-
moval (MVCOR), which utilizes the heterogeneous representa-
tions of multi-view data by ignoring the inconsistency noises
2

and fully using the latent consistency. For robust clustering, a
well-designed outlier removal strategy is used to make MVCOR
more robust to outliers in multi-view data and even the ex-
treme outliers (the outliers lie farther away than the common
outliers). More specifically, MVCOR categorizes all the two types
of multi-view outliers into two additional clusters respectively,
which significantly removes the interference of outliers and thus
oosts the clustering performance on multi-view data. The main
ontributions of this paper are summarized as follows:

• MVCOR simultaneously performs clustering and detects dif-
ferent types of outliers, which achieves a more superior and
stable clustering performance.

• MVCOR removes the negative influence of outliers in multi-
view data, thereby further enhancing the clustering robust-
ness and performance.

• MVCOR scales almost linearly with the data size, thus it can
be easily applied to the large-scale data.

The rest of this paper is organized as follows. In Section 2, we
ive a brief review of robust multi-view clustering and outlier
etection. In Section 3, we discuss how to find the two types
f outliers in detail. We present our model in Section 4 and
ptimize the model in Section 5. The ability of clustering and
inding outliers as well as the robustness of MVCOR will be tested
n Section 6. Section 7 is a short conclusion.

. Related work

.1. Robust multi-view clustering

Multi-view clustering assumes that data from different views
re consistent with an underlying clustering structure [22]. The
ell-known boosting techniques include co-training [38] and co-
egularization [39], which both improve the performance of one
iew through other views. Another commonly-used multi-view
echnique is adaptive view weight updates [40]. In robust multi-
iew clustering, one of the prominent works is the L2,1-norm,
hich is also known as sparsity-inducing norm [41]. In particular,
he L2,1-norm of matrix is defined as ∥X∥2,1 =

∑
i ∥X

i
∥2, where

i is the ith row vector of the matrix X . Since the classical k-
eans algorithm uses the Frobenius norm and calculates the
quare distance between data points and their cluster centroids,
ttribute-outliers generate a large value in the objective function
nder this case. In contrast, the L2,1-norm eliminates the expo-
ent, which calculates distance but not square distance, and suc-
essfully weakens the outliers’ contribution to the objective func-
ion. Many works introduce the L2,1-norm. Kong et al. [42] adopt
he L2,1-norm into Non-negative Matrix Factorization (NMF). Cai
t al. [16] adopt k-means into large-scale multi-view data by
ntroducing the L2,1-norm. Liang et al. [43] then extend it to
the kernel space. Kannan et al. [44] propose an NMF method
and used the L2,1-norm to model the outliers. Jiang et al. [45]
propose a new Vector Outlier Regularization (VOR) framework to
understand and analyze the robustness of the L2,1-norm function.
However, the L2,1-norm just weakens but not eliminates the
influence of the outliers, and is still not robust enough in practice.
The extreme outliers can easily make these methods invalid. But
only a few works try to remove the negative influence of outliers.
Gao et al. [46] introduce capped-norm, limiting the residual of
outliers by setting a threshold, which is equivalent to removing
the extreme values in each iteration. Huang et al. [12] then adopt
it into multi-view k-means. Nevertheless, all these mentioned
methods can only handle the attribute-outliers and neglect the
class-outliers.
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.2. Outlier detection

Outlier detection aims to detect abnormal data in a given
ataset [47]. In other words, the main goal of outlier detec-
ion is to find outliers or noises that are markedly different
rom or inconsistent with the normal instances [48]. Up to now,
any single-view outlier detection methods have been proposed,

ncluding distance-based methods [49–51], density-based meth-
ds [52], etc. These methods have their advantages in different
istributed datasets. When the data distribution is different from
he expected assumptions, they often have very poor perfor-
ance. In addition, some other research try to combine outlier
etection and clustering, but they also mainly concentrate on
ingle-view algorithm, such as ORC [53], k-means– [54], ODC [47],
MOR [31] and COR [55]. These methods try to find the outlier
hrough analyzing the hidden clustering structure, so they cannot
ven work in non-clustering data. But their detecting results are
ore suitable to boost the corresponding clustering method than

he non-clustering outlier detection methods. There are only a
ew multi-view outlier detection methods in the literature. The
eason is that it is difficult to define multi-view outliers due to
he increase in views. Gao et al. [34] firstly study the inconsis-
ent behavior and propose a graph-based approach HOAD, which
ses spectral technique and computes the class-outlier score by
onsidering the cosine distance between the clustering result in
ifferent views. But this framework is too rough and only can
ind multi-view outliers preliminarily. Janeja et al. [56] raise a
imilar problem of multi-domain anomaly detection, and there is
preliminary consensus on the definition of multi-view outliers.
lvarez et al. [35] consider the affinity propagation algorithm
nd propose four types of anomaly score computation based
n the clustering-based affinity vectors, which makes a great
uccess and is often regarded as the baseline of multi-view outlier
etection. Different from robust multi-view clustering, the afore-
entioned multi-view outlier detection algorithms mainly focus
n detecting the class-outlier.

. Preliminaries

Suppose there are N independent and identically distributed
i.i.d) instances and M different views of features, the aim is
o partition these instances into K disjoint clusters. Each view
as its representation of these N instances such that: X (v)

=

X (v)
1 , . . . , X (v)

n ] ∈ Rdim (v)×N, where dim (v) is the feature dimen-
ion in the vth view. Similarly, the cluster centroids in the vth
iew are denoted as F (v)

= [F (v)
1 , F (v)

2 , . . . , F (v)
K ] ∈ Rdim (v)×K. In

his paper, the ith column of a matrix A is denoted as Ai (a column
ector), the ith row of a matrix A is denoted as Ai (a row vector),
nd the element in the ith row, the jth column of a matrix A
s denoted as ai,j. The notations used throughout this paper are
ummarized in Table 1.

.1. Robust multi-view k-means clustering using L2,1-norm
RMKMC)

Multi-view k-means forces each instance to be assigned to the
ame cluster across all views. Thus, a common cluster indicator
atrix U is shared among all views, in which ui,k = 1 indicates

he ith instance to be assigned to the kth cluster, otherwise
i,k = 0. Each instance can only be assigned to one cluster, whose
entroids in all views are nearest to it. Now, we introduce the
3

able 1
ummary of notations.

Notation Description

X Multi-view data set

N The number of instances in X

M The number of views

K The number of clusters

F Multi-view cluster centroids

dim (v) The number of features in the vth view

gv,i The index of the nearest cluster of the ith instance in the vth
view

U Cluster indicator matrix with the two types of outliers, i.e.,
K + 1 represents the attribute-outlier and K + 2 represents the
class-outlier

U Cluster indicator matrix for K clusters without discriminate
between the normal instances and the outliers

∥ · ∥2,1 the L2,1-norm

1[·] The indicator function, and it equals to 1 if condition is true,
otherwise equals to 0

Z i The ith row of the matrix Z

Zi The ith column of the matrix Z

zi,j The element in the ith row and the jth column of the matrix Z

D(v) The matrix corresponds to the vth view and the element
corresponds to the ith instance and the kth centroid is defined
as d(v)i,k = (2∥X (v)

i − F (v)
k ∥2)

−1

α View weight factor vector

γ Parameter to control the weight distribution

θ1 Parameter to control the threshold between normal instance
and attribute-outlier

θ2 Parameter to control the threshold between normal instance
and class-outlier

nmax Parameter to control the maximum number of outliers the
algorithm can find

ei Row vector of adaptive length that the ith element is 1, and
others are 0

A The entirety of variable U , G, U and α

a(v)i,k The sum of all coefficients of d(v)i,k ∥X
(v)
i − F (v)

k ∥
2
2 in objective

function Eq. (11)

DV (i, k, v) The distance vector defined as DV (i, k, v) = X (v)
i − F (v)

k

general robust multi-view k-means using the L2,1-norm [16]:

min
U,F ,α

M∑
v=1

(αv)γ
N∑

i=1

K∑
k=1

ui,k∥X
(v)
i − F (v)

k ∥2

s.t.
K∑

k=1

ui,k = 1, ui,k ∈ {0, 1}, ∀i = 1, . . . ,N,

αT1 = 1,

(1)

where (αv)γ is the weight of the vth view, γ is the parameter to
control the weight distribution (γ → ∞ gives all view the same
weight, γ = 1 assigns 1 to the weight of the view whose residual
is smallest and assigns 0 to the weights of other views). The L2,1-
norm minimization of the objective function is adopted to ensure
the robustness to the outliers in data points. In this objective
function, ui,k = 1 when distance error

∑M
v=1 (αv)γ ∥X (v)

i − F (v)
k ∥2

is minimal.
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Fig. 3. An illustration of the presupposition in two view scenario: (a) The
attribute-outlier satisfy that its distance error (the red arrow) is no less than
some multiple of the average distance error (the blue arrow); (b) The class-outlier
atisfy that its distance error in two views (sum of the two red arrows) is no
ess than some multiple of the distance error to the closest centroid respectively
n two views (sum of the blue arrows). (For interpretation of the references to
olour in this figure legend, the reader is referred to the web version of this
rticle.)

.2. The outlier removal strategy

As mentioned earlier, there are two types of outliers in multi-
iew data: class-outliers and attribute-outliers. Because the
-means algorithm is based on distance, it is reasonable to use
he distance-based method to model the class-outlier and the
ttribute-outlier. Distance error of the ith instance be assigned to
he kith cluster is defined as:

E(i) =

M∑
v=1

(αv)γ ∥X (v)
i − F (v)

ki
∥
2
, (2)

here αv and γ are defined in Section 3.1. The outlier removal
trategy regards an instance as an outlier when its distance error
s greater than a well-defined threshold.

For the attribute-outlier, one possible presupposition is that
ttribute-outliers always lay far away from its cluster centroids
nd its distance error is significantly greater than the average.
s shown in Fig. 3(a), we suppose the threshold of judging
ttribute-outlier is defined as some multiple of the average dis-
ance error (assume that the ith instance is an attribute-outlier):

E(i) > θ1 avg
j=1,...,N

[DE(j)], (3)

here θ1 is the parameter, avg is the average function that
alculates the average distance error.
The class-outlier performs inconsistent behavior and belongs to

ifferent clusters in different views. If we figured out
lass-outliers’ closest cluster centroids in each view, the closest
luster centroids in some views were not the assigned cluster
entroids and the distance error is greater than the sum of the
ingle-view distance error to these closest cluster centroids. As
hown in Fig. 3(b), the threshold of judging class-outlier is defined
4

s some multiple of this sum (assuming that instance i is a
lass-outlier):

E(i) > θ2

M∑
v=1

(αv)γ ∥X (v)
i − F (v)

gv,i
∥
2
, (4)

where gv,i is the ith instance’s closest cluster index in the vth
view and θ2 is the parameter. Normal instances have consistent
behavior, thus their closest clusters in each view are the same,
and the In Eq. (4) will take the mark of equality when θ2 = 1.
However, class-outliers have different gv,i correspond to different
v. Once we assume that the class-outlier performs consistent
behavior and classifies it into the kith cluster, the left side of the
n Eq. (4) will be greater since many of gv,i are not equal to ki. An
instance may be both attribute-outlier and class-outlier, but the
outlier detection task is just to find outliers. Thus, the proposed
algorithm is effective as long as the instance is classified as any
kind of multi-view outliers.

4. Proposed method

To remove the negative influence of the two types of outliers,
our method MVCOR combines both the L2,1-norm and the idea
that separately classify outliers into specific clusters. We apply In
Eq. (3) and In Eq. (4) as the criterion of judging attribute-outliers
and class-outliers, classifying them into the cluster K + 1 and the
luster K + 2 respectively. Thus the objective function is further
ormulated as:

min
U,F ,G,U,α

N∑
i=1

(
K∑

k=1

ui,k

M∑
v=1

(αv)γ ∥X (v)
i − F (v)

k ∥2

+ ui,K+1T1(U, F ) + ui,K+2T2(Gi, F ))

s.t.
K+2∑
k=1

ui,k = 1, ui,k ∈ {0, 1}, ∀i = 1, . . . ,N,

K∑
k=1

ui,k = 1, ui,k ∈ {0, 1}, ∀i = 1, . . . ,N,

N∑
j=1

(uj,K+1 + uj,K+2) ≤ nmax

gv,i ∈ {1, . . . ,N}, αT1 = 1,

(5)

where

T1(U, F ) = θ1 avg
j=1,...,N

[DE(j)], (6)

T2(Gi, F ) = θ2

M∑
v=1

(αv)γ ∥X (v)
i − F (v)

gv,i
∥
2
, (7)

and the average distance is formulated as:

avg
j=1,...,N

[DE(j)] =
1
N

N∑
j=1

K∑
k=1

uj,k

M∑
v=1

(αv)γ ∥X (v)
j − F (v)

k ∥
2
, (8)

where X , F , G, αv , γ , θ1 and θ2 are mentioned above. nmax limits
the maximum number of outliers the algorithm can find and
guarantees that it does not discard too many instances. In this
place, U ∈ RN×(K+2) is the cluster indicator matrix for K +

clusters, i.e., ui,K+1 = 1 when instance i is classified into
he cluster K + 1 and is considered as an attribute-outlier, and
i,K+2 = 1 represents the instance i is a class-outlier. U ∈ RN×K

is the cluster indicator matrix for K clusters if the proposed
method perform clustering without judging attribute-outliers and
class-outliers. From another perspective, U can be regarded as
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he classical clustering result. By removing attribute-outliers and
lass-outliers, we can get more robust clustering centroids, which
mprove the classical clustering result U . G ∈ RM×N records the
ndex of nearest clusters for each instance and each view.

According to Eq. (5), when ui,K+1 = 1, instance i is an
attribute-outlier and it must satisfy the inequation:

DE(i) > T1(U, F ) ∀k = 1, . . . ,K. (9)

or the same reason, when ui,K+2 = 1, instance i is an class-outlier
nd it must satisfy the inequation:

E(i) > T2(Gi, F ) ∀k = 1, . . . ,K. (10)

. Optimization and analysis

Similar to the classical k-means clustering optimization, the
fficient alternating minimization algorithm is used to optimize
he Eq. (5). Alternating minimization algorithm solves optimiza-
ion problems over more than one variables, each alternating
tep optimizes one variable and is usually convex and tractable.
owever, it is not easy to utilize the derivative method to the
um of a series of vector l2-norm. Firstly, we rewrite Eq. (5) by
eplacing all ∥X (v)

i − F (v)
k ∥2 with d(v)i,k∥X

(v)
i − F (v)

k ∥
2
2:

min
U,F ,G,U,D,α

N∑
i=1

(
K∑

k=1

ui,k

M∑
v=1

(αv)γ d
(v)
i,k∥X

(v)
i − F (v)

k ∥
2
2

+ ui,K+1T1(U, F ) + ui,K+2T2(Gi, F ))

s.t.
K+2∑
k=1

ui,k = 1, ui,k ∈ {0, 1}, ∀i = 1, . . . ,N,

K∑
k=1

ui,k = 1, ui,k ∈ {0, 1}, ∀i = 1, . . . ,N,

N∑
j=1

(uj,K+1 + uj,K+2) ≤ nmax

gv,i ∈ {1, . . . ,N}, αT1 = 1,

(11)

here

1(U, F ) =
θ1

N

N∑
i=1

K∑
k=1

ui,k

M∑
v=1

(αv)γ d
(v)
i,k∥X

(v)
i − F (v)

k ∥
2
2, (12)

2(Gi, F ) = θ2

M∑
v=1

(αv)γ d
(v)
i,gv,i

∥X (v)
i − F (v)

gv,i
∥
2

2
, (13)

(v)
i,k =

1

2∥X (v)
i − F (v)

k ∥2

. (14)

We will illustrate that we can get the same result of the
rigin objective function Eq. (5) by solving the rewritten objective
unction Eq. (11). And the alternating minimization algorithm of
ptimizing Eq. (11) is also convergent.

.1. Fix U, G, U, α, D and update F

For view v and cluster k, optimizing Eq. (11) w.r.t F (v)
k is

equivalent to minimizing the problem as follows:

J =argmin
f

N∑
i=1

(ui,kd
(v)
i,k∥X

(v)
i − f ∥

2
2

+ ui,K+1
θ1

N

N∑
j=1

uj,kd
(v)
j,k∥X

(v)
j − f ∥

2

2

(v) (v) 2

(15)
+ ui,K+2θ2di,k∥Xi − f ∥21[gv,i = k]),
5

where 1[gv,i = k] is the indicator function, and it equals to 1 if
v,i = k, otherwise equals to 0. Taking the derivative of Eq. (15)
.r.t. f , we have:

∂ J
∂ f

=

N∑
i=1

(2ui,kd
(v)
i,k (f − X (v)

i )

+ 2ui,K+1
θ1

N

N∑
j=1

uj,kd
(v)
j,k (f − X (v)

j )

+ 2ui,K+2θ2d
(v)
i,k (f − X (v)

i )1[gv,i = k]).

(16)

Setting Eq. (16) to 0, we get the updating rule of F (v)
k given in

ox I.

.2. Fix U, F , G, U, α and update D

We update D by Eq. (14).

5.3. Fix U, F , α, D and update G, U

gv,i is calculated by its definition:

v,i = argmin
k

∥X (v)
i − F (v)

k ∥
2
2. (18)

or U , we have:

in
U

N∑
i=1

K∑
k=1

ui,k

M∑
v=1

(αv)γ d
(v)
i,k∥X

(v)
i − F (v)

k ∥
2
2. (19)

To minimize the Eq. (19), we tackle it for each instance one by
one. For a specific instance i, we find the solution by searching
all possible answer:

U
i
= ek, (20)

in which

k = argmin
k

M∑
v=1

(αv)γ d
(v)
i,k∥X

(v)
i − F (v)

k ∥
2
2, (21)

where ei is a row vector that the ith element is 1, and others are
0.

5.4. Fix F , G , U , α, D and update U

We also use the exhaustive search strategy to find the solu-
tion:

U i
= ek, (22)

in which

k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k, U i,k = 1,∑M
v=1 (αv)γ d

(v)
i,k

∥X (v)
i − F (v)

k
∥
2

2
is minimum

K + 1, T1(U, F ) in Eq. (12) is minimum

K + 2, T2(Gi, F )in Eq. (13) is minimum.

(23)

However, this may not satisfy the constraint
∑N

j=1(uj,K+1+uj,K+2)
≤ nmax. When there is more than nmax outlier in this iteration,
we maintain the top nmax outliers according to the difference
between the distance error and T1(U, F ) (when k = K + 1 in
Eq. (23)) or T2(Gi, F ) (when k = K + 2 in Eq. (23)), i.e., let

i1, i2, . . . , inmax

=argmax
1≤i≤nmax

{
M∑

v=1

(αv)γ d
(v)
i,k

∥X (v)
i − F (v)

k
∥
2

2
(24)
− 1[k = K + 1]T1(U, F ) − 1[k = K + 2]T2(Gi, F )},
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F (v)
k =

∑N
i=1(ui,kd

(v)
i,kX

(v)
i + ui,K+1

θ1
N

∑N
j=1 uj,kd

(v)
j,kX

(v)
j + ui,K+2θ2d

(v)
i,kX

(v)
i 1[gv,i = k])∑N

i=1(ui,kd
(v)
i,k + ui,K+1

θ1
N

∑N
j=1 uj,kd

(v)
j,k + ui,K+2θ2d

(v)
i,k1[gv,i = k])

. (17)

Box I.
T
m
e

P
r

o

here k satisfies that U i,k = 1 and k is derived by Eq. (23). The
utliers which are not in {i1, i2, . . . , inmax} are reset by U:

U i
= U

i
, ∀i not in {i1, i2, . . . , inmax}. (25)

.5. Fix U, F , G, U, D and update α

Optimizing Eq. (11) w.r.t. αv is equivalent to minimizing the
problem as follows:

min
U,F ,G,U,D,α

M∑
v=1

(αv)γ
N∑

i=1

(
K∑

k=1

ui,kd
(v)
i,k∥X

(v)
i − F (v)

k ∥
2
2

+ ui,K+1
θ1

N

N∑
j=1

K∑
k=1

uj,kd
(v)
j,k∥X

(v)
j − F (v)

k ∥
2

2

+ ui,K+2θ2d
(v)
i,gv,i

∥X (v)
i − F (v)

gv,i
∥
2

2
).

(26)

Let

H(v) =

N∑
i=1

(
K∑

k=1

ui,kd
(v)
i,k∥X

(v)
i − F (v)

k ∥
2
2

+ ui,K+1
θ1

N

N∑
j=1

K∑
k=1

uj,kd
(v)
j,k∥X

(v)
j − F (v)

k ∥
2

2

+ ui,K+2θ2d
(v)
i,gv,i

∥X (v)
i − F (v)

gv,i
∥
2

2
),

(27)

and the Eq. (26) w.r.t. α is simplified as:

min
α

M∑
v=1

(αv)γH(v)

s.t. αT1 = 1.

(28)

Taking Lagrangian function of Eq. (28) and solving it, we have:

αv =
(γH(v))

1
1−γ∑M

v=1 (γH(v))
1

1−γ

. (29)

otice that H(v) ≥ 0, γ ∈ (1, +∞), which ensures αv ≥ 0.

.6. Convergence analysis

In this section, we provide the convergence analysis in Algo-
ithm 1.

heorem 1. Solving the rewritten objective function Eq. (11) is
equivalent to solving the objective function Eq. (5).

Proof. The rewritten objective function Eq. (11) and the objective
function Eq. (5) are represented by objnew and objold respectively.
In tth iteration, we have

objnew(U
t , F t ,Gt ,U, αt ,Dt ) = objold(U

t , F t ,Gt ,U, αt ). □ (30)

Before introducing the theoretical analysis w.r.t. Algorithm 1,
we start by a significant Lemma in [30]:
6

Algorithm 1 The algorithm of MVCOR

Input:
Data for M views {X (1), . . . , X (M)

} and X (v)
∈ Rdim(v)×N;

The expected number of clusters K;
The parameters θ1, θ2, γ and nmax.

Output:
The cluster assignment matrix U with the two types of
outliers;
The cluster assignment matrix U without the two types of
outliers;
The cluster centroid matrix F (v) for each view.

Initialization:
Initialize t = 0, αv =

1
M , d(v)i,k = 1;

Initialize U and U with the same values.
1: repeat
2: Update F (v)

k by Eq. (17);
3: Update D by Eq. (14);
4: Update gv,i by Eq. (18), U

i
by Eqs. (20) and (21);

5: Update U i by Eqs. (22) and (23), and if there is more than
nmax outlier, reset some outliers by Eqs. (24) and (25);

6: Update αv by Eqs. (27) and (29);
7: t = t + 1.
8: until Converges

Lemma 1.

∥a∥2 − ∥b∥2 ≤
∥a∥2

2

2∥b∥2
−

∥b∥2
2

2∥b∥2
∀a, b ∈ Rc, a ̸= 0, b ̸= 0. (31)

Proof.

(∥b∥2 − ∥a∥2)
2

≥ 0

⇒∥b∥2
2 − 2∥b∥2∥a∥2 + ∥a∥2

2 ≥ 0

⇒2∥b∥2∥a∥2 − ∥a∥2
2 ≤ 2∥b∥2

2 − ∥b∥2
2

⇒∥a∥2 −
∥a∥2

2

2∥b∥2
≤ ∥b∥2 −

∥b∥2
2

2∥b∥2

⇒∥a∥2 − ∥b∥2 ≤
∥a∥2

2

2∥b∥2
−

∥b∥2
2

2∥b∥2
□

(32)

heorem 2. Even if introducing matrix D, our alternating mini-
ization algorithm also decrease the objective function Eq. (11) in
ach iteration.

roof. Firstly, we regard the variable U , G, U and α as an entirety,
epresented by the upper letter A. The target is to prove

bjnew(D
t , F t ,At ) ≥ objnew(D

t+1, F t+1,At ) (33)

and

objnew(D
t+1, F t+1,At ) ≥ objnew(D

t+1, F t+1,At+1). (34)

Notice that all the steps in Algorithm 1 decrease the objective
function Eq. (11) except for updating D, so In Eq. (34) is always
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rue. To prove In Eq. (33), we reformulate the objective function
q. (11):

min
,D,F

N∑
i=1

K∑
k=1

M∑
v=1

a(v)i,k d
(v)
i,k∥DV (i, k, v)∥2

2, (35)

here DV (i, k, v) = X (v)
i − F (v)

k , a(v)i,k is the sum of all coefficients

f d(v)i,k∥X
(v)
i − F (v)

k ∥
2
2. Notice that a(v)i,k is irrelevant to F and D.

ccording to Eqs. (35) and (14), we have:

objnew(A
t ,Dt+1, F t+1) − objnew(A

t ,Dt , F t )

=

N∑
i=1

K∑
k=1

M∑
v=1

a(v)i,k
t
d(v)i,k

t+1
∥DV(i,k,v)t+1

∥
2
2 −

N∑
i=1

K∑
k=1

M∑
v=1

a(v)i,k
t
d(v)i,k

t
∥DV(i,k,v)t∥2

2

=
1
2
(

N∑
i=1

K∑
k=1

M∑
v=1

a(v)i,k
t
∥DV(i,k,v)t+1

∥2 −

N∑
i=1

K∑
k=1

M∑
v=1

a(v)i,k
t
∥DV(i,k,v)t∥2).

(36)

And then, the function can be scaled down by Lemma 1 In
q. (31):

N∑
i=1

K∑
k=1

M∑
v=1

a(v)i,k
t
∥DV(i,k,v)t+1

∥2 −

N∑
i=1

K∑
k=1

M∑
v=1

a(v)i,k
t
∥DV(i,k,v)t∥2

≤

N∑
i=1

K∑
k=1

M∑
v=1

a(v)i,k
t ∥DV(i,k,v)t+1

∥
2
2

2∥DV(i,k,v)t∥2
−

N∑
i=1

K∑
k=1

M∑
v=1

a(v)i,k
t ∥DV(i,k,v)t∥2

2

2∥DV(i,k,v)t∥2

=

N∑
i=1

K∑
k=1

M∑
v=1

a(v)i,k
t
d(v)i,k

t
∥DV(i,k,v)t+1

∥
2
2 −

N∑
i=1

K∑
k=1

M∑
v=1

a(v)i,k
t
d(v)i,k

t
∥DV(i,k,v)t∥2

2.

(37)

Because the step of updating F is not increasing, we have
N∑

i=1

K∑
k=1

M∑
v=1

a(v)i,k
t
d(v)i,k

t
∥DV(i,k,v)t+1

∥
2
2

−

N∑
i=1

K∑
k=1

M∑
v=1

a(v)i,k
t
d(v)i,k

t
∥DV(i,k,v)t∥2

2 ≤0. (38)

Thus we demonstrate the In Eq. (33). Both In Eq. (33) and In
Eq. (34) are always true, so our algorithm is decreasing in each
iteration. □

From Theorems 1 and 2, the alternating minimization algo-
rithm cooperates to decrease both objective function Eqs. (5) and
(11), and will converge to the suboptimal solution.

5.7. Discussion of the parameter θ1 and θ2

MVCOR involves four parameters: γ , θ1, θ2 and nmax. The
parameter γ is to control the view weight distribution and the
detail of γ is originated in [16]. The parameter nmax is to make
sure that clustering can be carried out normally and MVCOR does
not find too many outliers. The parameter θ1 and θ2 are the key
parameters to find outliers. However, the appropriate value of
these two parameters may greatly differ in various datasets. In
this subsection, we focus on the method of setting parameters
θ1 and θ2 by assuming the rates of class-outliers and attribute-
outliers. We first run MVCOR with no outlier detection, i.e., setting
a very large value to the parameter θ1 and θ2. And then, we
calculate the smallest θ

(i)
1 and θ

(i)
2 for each instance i when the

instance is opportunely classified as class-outlier and attribute-
outlier respectively. Next, we sort the θ

(i)
1 and θ

(i)
2 , and choose

the suitable θ1 and θ2 from largest to smallest according to the
assumed rate of class-outliers and attribute-outliers. The detail of
this method is shown in Algorithm 2. This algorithm can work
7

Algorithm 2 The algorithm of getting appropriate parameters θ1
and θ2

Input:
Data for M views {X (1), . . . , X (M)

} and X (v)
∈ Rdim(v)×N;

The expected number of clusters K;
The parameter γ ;
The rates of class-outliers nc and attribute-outliers na.

Output:
The parameters θ1 and θ2.

1: Run multiple times of general robust multi-view k-means
using L2,1-norm, or called RMKMC [16]. Choose the result
when the value of the objective function Eq. (1) is minimal;

2: Calculate the distance error DE(i) between the ith instance
and its assigned cluster centroid;

3: Calculate the average distance avg
j=1,...,N

[DE(j)];

4: Calculate DE(i)
avg

j=1,...,N
[DE(j)] , and select the ⌈N× na⌉th large value as

θ1;
5: Calculate gv,i by Eq. (18);
6: Calculate the distance error DE ′(i) between the ith instance

and the cluster gv,i;
7: Calculate DE(i)

DE′(i) , and select the ⌈N × nc⌉th large value as θ2.

effectively because the clustering centroids of the non-robust
multi-view clustering is not far away from its true position. In
other words, outliers cannot cover useful information. Therefore,
we can estimate the true distance and clusters’ centroids, and
further estimate the parameter θ1 and θ2.

5.8. Complexity analysis

All notations used below can be referred in Table 1, and
dmax = max {dim (v)}. In each iteration, the cost of updating F
by Eq. (17) is O(NMKdmax), the cost of updating D by Eq. (14) is
O(NMKdmax), the cost of updating G by Eq. (18) is O(NMKdmax),
the cost of updating U by Eqs. (20) and (21) is O(NMKdmax), the
cost of calculating Eq. (12) is O(NMKdmax), the cost of calculating
Eq. (13) is O(NMdmax), the cost of updating U by Eqs. (22) and
(23) is O(NMKdmax), the reset step need to sort the value in
Eq. (24), the average cost of quick sort is O(N logN), the cost of
updating α by Eqs. (27) and (29) is O(NMKdmax). To sum up, if the
number of iterations is t, the overall time complexity of MVCOR
is O(tNMKdmax + tN log N). The N logN term is only relative to
Eq. (24), and will not be executed many times with appropriate
parameters θ1 and θ2. Moreover, the number of outliers which
need sorted will be much less than N in this case. Therefore, logN
is much less than MKdmax in most practical case, and MVCOR cost
a nearly linear time complexity with the data size.

6. Experiments

Because there is no algorithm for both multi-view clustering
and multi-view outlier detection, in this section, we evaluate
MVCOR in three-part: comparing its clustering performance, ana-
lyzing its outlier detection ability, and illustrating its robustness.

6.1. Clustering

6.1.1. Datasets
This experiment is performed on several real-world bench-

mark datasets:
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able 2
escription of multi-view datasets (with feature dimension in parenthesis)
View SensIT-3000 MSRC-v1 AWA-10

1 Acoustic (50) CM (24) CQ (2688)
2 Seismic (50) HOG (576) LSS (2000)
3 – GIST (512) PHOG (252)
4 – LBP (256) RGSIFT (2000)
5 – CENT (254) SIFT (2000)
6 – – SURF (2000)

Number of instances 3000 210 800
Number of classes 3 7 10

• SensIT Vehicle [57] is a dataset from wireless distributed sen-
sor networks, which consists of two views of data recorded
by two different sensors. We download the dataset from
LIBSVM and randomly sample 1000 instances for each class,
regarded as a new dataset named SensIT-3000.

• MSRC-v1 [58] is a scene recognition dataset from Microsoft
Research in Cambridge. Following [2], we select 7 classes,
i.e., tree, building, airplane, cow, face, car, bicycle, and use
5 visual feature extraction method to generate each view of
data.

• Animal With Attributes (AWA) [59] is a large-scale dataset,
which consists of six views of data. We select first 10 classes,
i.e., antelope, bat, beaver, blue whale, bobcat, buffalo, chi-
huahua, chimpanzee, collie, cow, and randomly sample 80
instances for each class, regarded as a new dataset named
AWA-10.

Table 2 summarizes the detailed information of the multi-view
atasets.

.1.2. Evaluation metrics
Six popular clustering evaluation metrics are used to mea-

ure the clustering performance, including Cluster Accuracy (ACC)
60], Normalized Mutual Information (NMI) [61], Purity [42], Ad-
usted Rand Index (ARI), Rand Index(RI) and F-Measure (FM).
pecifically, these metrics range in [0, 1] (ACC, NMI, Purity, RI,
M) or [−1, 1] (ARI), and higher scores mean better clustering
erformance.

.1.3. Comparison algorithms and experimental setup
Several multi-view clustering methods are employed to com-

are with MVCOR:

• Co-train [38] is the co-training multi-view spectral clus-
tering, which bootstraps the spectral clustering results of
different views using the eigenvalue matrices from one an-
other.

• Co-reg [39] is the centroid-based co-regularized multi-view
spectral clustering, which regularizes each view-specific
eigenvalue matrices towards a common centroid matrix.
Both co-training and co-regularization are well-known tech-
niques in multi-view clustering which are set to compare
with the view weight technique.

• RMKMC [16] is the robust multi-view k-means clustering
using L2,1-norm, which the logarithm of the parameter γ

is searched in range [0.1, 2]. It is worth mentioning that
RMKMC can be regarded as the fundamental version of our
method without outlier removal strategy.

• DEKM [62] is the discriminatively embedded k-means,
which is based on weighted multi-view Linear Discriminant
Analysis (LDA) and can efficiently handle high dimensional
data. This is the baseline of non-robust multi-view k-means
clustering method.
 a

8

• CaMVC [12] is the improved version of RMKMC in robust-
ness by using capped-norm, which chooses the extreme
data outliers by a thresholding parameter. But it can only
handle attribute-outliers. Notice that RMKMC, CaMVC and
our method are view-weight-based methods.

The classical single-view k-means algorithm is used as the
aseline, and is applied on each view of datasets, e.g., KM (view
) is the algorithm run on the 1st view as well as KM (all) is on
he concatenated features of all views.

As for the parameter selection, we use the same γ of RMKMC,
s well as run Algorithm 2 to search the appropriate θ1 and θ2
n the rate of 0% ∼ 9% respectively. The nmax is simply set to
.2 number of instances. U and U are initialized randomly and

satisfied that the instance numbers of different clusters are nearly
equal. That is, we first generate an index vector of length N which
is satisfied that the first ⌊N/K⌋ elements are 1, the second ⌊N/K⌋

lements are 2, . . . , the Kth ⌊N/K⌋ elements are K, and the rest
− ⌊rmN/K⌋ ∗ K elements are random integer values range in

1,K]. And then we sort the index vector randomly. If the ith
lement of the index vector equals to k, ui,k and ui,k is initialized

to 1, otherwise is initialized to 0.
For MVCOR, the matrix U is regarded as the clustering result.

We run each method for 30 times and show the mean values and
standard deviations.

6.1.4. Experimental results
The experimental results are shown in Tables 3, 4, 5, and the

best results in each dataset are highlighted in boldface. Table 6
shows the significant difference test in accuracy.

• Most multi-view clustering methods perform better than
the baseline method in single-view data. Thus it is mean-
ingful to use the integrated information to improve the
clustering performance.

• Most multi-view clustering methods outperform the base-
line method that directly concatenate all views of data. This
is because the latter method cannot dig out the most useful
information, but treat all views of data equally.

• Co-training and co-regularization continuous display excel-
lent results, but other view-weight-based methods perform
slightly behind them, illustrating the effectiveness of using
view weight technique.

• RMKMC works better than DEKM, illustrating that robust-
ness to outliers can boost the clustering performance.

• MVCOR works better than RMKMC, illustrating the superior
of the outlier removal strategy and that the only use of L2,1-
norm is not enough to boost the clustering performance.

• MVCOR works better than CaMVC, and we log the outliers
found by MVCOR in the SensIT-3000 dataset and find that
the number of class-outliers is far more than the number
of attribute-outliers. MVCOR performs better than CaMVC
which can only tackle attribute-outliers in this dataset, show-
ing that removing class-outliers improves the clustering per-
formance to some extent.

.2. Identification of outliers

.2.1. Data generation
Following the data setting in [35] and [33], we select 7 UCI

achine learning datasets: Iris, Letter, Ionsphere, Zoo, Waveform,
ima, and Wdbc. To save evaluation time, we randomly select
ome instances from each dataset, and Table 7 summarizes the
etailed information. Since they are all single-view datasets, we
artition the features into two views equally. To generate class-
utliers, we randomly extract two instances from different classes
nd swap the features in one view and remain unchanged in
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able 3
lustering results on SensIT-3000 dataset.
Methods ACC NMI Purity ARI RI FM

KM (view 1) 0.5387 ± 0.07 0.1370 ± 0.04 0.5432 ± 0.06 0.1378 ± 0.05 0.5795 ± 0.05 0.5577 ± 0.04
KM (view 2) 0.6445 ± 0.02 0.2738 ± 0.02 0.6445 ± 0.02 0.2873 ± 0.02 0.6773 ± 0.01 0.6410 ± 0.02
KM(all) 0.6671 ± 0.03 0.2912 ± 0.02 0.6671 ± 0.03 0.3147 ± 0.03 0.6900 ± 0.02 0.6609 ± 0.03

Co-train 0.6892 ± 0.04 0.3093 ± 0.03 0.6904 ± 0.04 0.3314 ± 0.04 0.6982 ± 0.02 0.6875 ± 0.03
Co-reg 0.6953 ± 0.00 0.3327 ± 0.00 0.6953 ± 0.00 0.3412 ± 0.06 0.6899 ± 0.34 0.6749 ± 0.23
RMKMC 0.6684 ± 0.03 0.3022 ± 0.02 0.6884 ± 0.03 0.3235 ± 0.03 0.6870 ± 0.02 0.6623 ± 0.02
DEKM 0.6671 ± 0.02 0.2941 ± 0.01 0.6671 ± 0.01 0.3164 ± 0.02 0.6895 ± 0.01 0.6574 ± 0.02
CaMVC 0.6738 ± 0.02 0.3042 ± 0.01 0.6738 ± 0.02 0.3229 ± 0.02 0.6889 ± 0.01 0.6615 ± 0.01
MVCOR 0.6957 ± 0.01 0.3217 ± 0.01 0.6957 ± 0.01 0.3442 ± 0.01 0.6912 ± 0.00 0.6716 ± 0.01
Table 4
Clustering results on MSRC-v1 dataset.
Methods ACC NMI Purity ARI RI FM

KM (view 1) 0.3438 ± 0.02 0.2331 ± 0.02 0.3733 ± 0.02 0.1127 ± 0.01 0.7800 ± 0.01 0.3626 ± 0.02
KM (view 2) 0.5641 ± 0.07 0.4694 ± 0.05 0.5813 ± 0.06 0.3513 ± 0.06 0.8359 ± 0.02 0.5836 ± 0.05
KM (view 3) 0.5719 ± 0.05 0.4802 ± 0.05 0.5962 ± 0.05 0.3766 ± 0.05 0.8395 ± 0.02 0.5872 ± 0.05
KM (view 4) 0.4827 ± 0.03 0.4256 ± 0.03 0.5181 ± 0.03 0.2667 ± 0.03 0.8090 ± 0.02 0.5141 ± 0.02
KM (view 5) 0.4641 ± 0.04 0.4058 ± 0.02 0.5065 ± 0.03 0.2465 ± 0.03 0.8031 ± 0.01 0.5015 ± 0.03
KM (all) 0.6813 ± 0.07 0.5849 ± 0.06 0.7056 ± 0.06 0.4984 ± 0.08 0.8729 ± 0.02 0.6895 ± 0.07

Co-train 0.7030 ± 0.04 0.6159 ± 0.03 0.7305 ± 0.04 0.5129 ± 0.05 0.8702 ± 0.02 0.7102 ± 0.04
Co-reg 0.5900 ± 0.02 0.5083 ± 0.02 0.5960 ± 0.02 0.4065 ± 0.02 0.8352 ± 0.01 0.6079 ± 0.01
RMKMC 0.7025 ± 0.08 0.6233 ± 0.07 0.7267 ± 0.07 0.5303 ± 0.09 0.8840 ± 0.02 0.7049 ± 0.07
DEKM 0.6346 ± 0.07 0.5471 ± 0.04 0.6540 ± 0.06 0.4346 ± 0.06 0.8585 ± 0.02 0.6476 ± 0.06
CaMVC 0.6975 ± 0.07 0.6162 ± 0.06 0.7267 ± 0.06 0.5259 ± 0.08 0.8833 ± 0.02 0.6982 ± 0.06
MVCOR 0.7352 ± 0.06 0.6485 ± 0.05 0.7635 ± 0.05 0.5669 ± 0.07 0.8924 ± 0.02 0.7376 ± 0.06
Table 5
Clustering results on AWA-10 dataset.
Methods ACC NMI Purity ARI RI FM

KM (view 1) 0.2070 ± 0.02 0.0970 ± 0.02 0.2246 ± 0.03 0.0360 ± 0.01 0.6409 ± 0.09 0.2455 ± 0.02
KM (view 2) 0.1942 ± 0.01 0.0842 ± 0.01 0.2083 ± 0.01 0.0301 ± 0.01 0.7046 ± 0.04 0.2196 ± 0.01
KM (view 3) 0.2137 ± 0.01 0.1021 ± 0.00 0.2241 ± 0.01 0.0428 ± 0.01 0.7185 ± 0.03 0.2530 ± 0.01
KM (view 4) 0.2311 ± 0.02 0.1047 ± 0.02 0.2447 ± 0.02 0.0557 ± 0.01 0.7718 ± 0.03 0.2499 ± 0.02
KM (view 5) 0.2435 ± 0.02 0.1425 ± 0.01 0.2609 ± 0.01 0.0687 ± 0.01 0.7886 ± 0.02 0.2710 ± 0.01
KM (view 6) 0.2566 ± 0.02 0.1386 ± 0.01 0.2701 ± 0.02 0.0738 ± 0.01 0.7762 ± 0.02 0.2832 ± 0.01
KM (all) 0.2652 ± 0.02 0.1494 ± 0.01 0.2719 ± 0.02 0.0833 ± 0.01 0.7424 ± 0.04 0.2933 ± 0.01

Co-train 0.2829 ± 0.03 0.1623 ± 0.02 0.2883 ± 0.03 0.1002 ± 0.02 0.7756 ± 0.03 0.3327 ± 0.03
Co-reg 0.1622 ± 0.04 0.0695 ± 0.04 0.1666 ± 0.04 0.0200 ± 0.02 0.2425 ± 0.09 0.2276 ± 0.04
RMKMC 0.2873 ± 0.02 0.1755 ± 0.01 0.2973 ± 0.01 0.1057 ± 0.01 0.8364 ± 0.00 0.2989 ± 0.01
DEKM 0.2826 ± 0.01 0.1672 ± 0.00 0.2985 ± 0.01 0.1020 ± 0.01 0.8331 ± 0.00 0.2935 ± 0.01
CaMVC 0.2791 ± 0.02 0.1734 ± 0.01 0.2943 ± 0.02 0.0943 ± 0.01 0.8229 ± 0.01 0.2964 ± 0.01
MVCOR 0.2935 ± 0.01 0.1784 ± 0.01 0.3040 ± 0.01 0.1070 ± 0.01 0.8356 ± 0.00 0.3061 ± 0.01
t
g

Table 6
The p-value of significant difference test between the accuracy of MVCOR and
the accuracies of other algorithms in each datasets.
Datasets Co-reg Co-train RMKMC DEKM CaMVC

SensIT-3000 0.75 0.43 0.00 0.00 0.00
MSRC-v1 0.00 0.02 0.07 0.00 0.04
AWA-10 0.00 0.10 0.11 0.01 0.00

the other. To generate attribute-outliers, we randomly extract an
instance and replace its features in two views as random values.
In our experiment, 10% instances are preprocessed and labeled as
outliers, and two cases when two types of outliers have different
outlier ratios are investigated.

6.2.2. Evaluation metrics
For outlier detection, one of the most widely used evalua-

tion approaches is Receiver Operating Characteristic (ROC) anal-
ysis, and its evaluation metric is the area under the ROC curve
(AUC) [33]. The metric ranges in [0, 1], and higher AUC corre-
ponding to better algorithm performance.
 t

9

Table 7
Data setting in UCI datasets.
Datasets Iris Letter Ionosphere Zoo Waveform Pima Wdbc

N 150 1300 351 101 1200 768 569
K 3 26 2 7 3 2 2

6.2.3. Comparison algorithms and experimental setup
There are two outlier score methods used in this experiment:

• HOAD [34] is the horizontal anomaly detection, which is a
spectral clustering based method.

• AP [35] is the anomaly detection based on affinity propaga-
tion, which is the state-of-the-art multi-view outlier detec-
tion method. The best anomaly score calculation strategy of
AP is Hilbert–Schmidt Independence Criterion(HSIC).

The two algorithms above need a similarity matrix, we choose
he Gaussian kernel to build it. For each dataset, we repeatedly
enerate two types of outliers for 30 times and then calculate
he mean and standard deviation of AUC value. For our method,
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he average AUC (± STD) in UCI datasets (C represents the class-outlier and A represents the attrubute-outliers).

5% C + 5% A 3.3% C + 6.6% A 0% C + 10% A

HOAD AP MVCOR HOAD AP MVCOR HOAD AP MVCOR

Iris 0.5941 ± 0.08 0.9500 ± 0.03 0.8511 ± 0.05 0.5487 ± 0.09 0.9645 ± 0.02 0.8741 ± 0.05 0.5645 ± 0.08 0.9425 ± 0.03 0.9629 ± 0.02
Letter 0.6332 ± 0.04 0.8391 ± 0.02 0.8829 ± 0.02 0.7723 ± 0.04 0.8041 ± 0.01 0.8655 ± 0.01 0.6263 ± 0.12 0.8279 ± 0.02 0.9964 ± 0.00
Ionosphere 0.6945 ± 0.09 0.8935 ± 0.02 0.6530 ± 0.04 0.5289 ± 0.09 0.8033 ± 0.02 0.5679 ± 0.03 0.1312 ± 0.23 0.8324 ± 0.01 0.9522 ± 0.01
Zoo 0.4798 ± 0.01 0.8693 ± 0.04 0.7843 ± 0.06 0.2607 ± 0.09 0.8865 ± 0.03 0.9310 ± 0.04 0.3005 ± 0.10 0.8602 ± 0.02 0.9568 ± 0.05
Waveform 0.5976 ± 0.04 0.8880 ± 0.05 0.8688 ± 0.02 0.7255 ± 0.05 0.8978 ± 0.02 0.9170 ± 0.01 0.1180 ± 0.06 0.9598 ± 0.00 0.9899 ± 0.00
Pima 0.6915 ± 0.03 0.7891 ± 0.03 0.7303 ± 0.02 0.7785 ± 0.03 0.7751 ± 0.02 0.8602 ± 0.02 0.8411 ± 0.04 0.6982 ± 0.02 0.9481 ± 0.01
Wdbc 0.7580 ± 0.05 0.9709 ± 0.01 0.9126 ± 0.03 0.5130 ± 0.04 0.9723 ± 0.01 0.9178 ± 0.02 0.9363 ± 0.02 0.9298 ± 0.00 0.9899 ± 0.00
Fig. 4. Two views of the synthetic dataset. The outliers are denoted as gray points.
Fig. 5. The clustering performance on the synthetic dataset. The X-coordinate and the Y-coordinate are the rate of the two types of outliers adding in the experiment
e.g. 0.1 is adding 60 outliers). The left picture represents the clustering performance of RMKMC, and the right picture is MVCOR. (a) shows the accuracy result, and
b) shows the NMI result.
is set to 2, and we firstly run Algorithm 2 for each outlier
eneration. And then run Algorithm 1 with relevant θ1 and θ2
or 60 times and choose half of the results that objective values
re smaller. Finally, we use the number of times that instance is
lassified into outliers as the outlier score.

.2.4. Experimental results
The experimental result is reported in Table 8. It is obvious

hat MVCOR performs better than HOAD in all datasets, and its
bility of outlier detection is almost equal to AP. MVCOR has a
uperior ability to find the attribute-outlier and a slightly inferior
bility to find the class-outlier. The K-means algorithm can only
ind the globular clusters, which makes MVCOR difficult to extract
he complex cluster structure and furthermore accurately identify
he class-outliers. But the attribute-outliers can be easily found
ven if the method ignores the cluster structure and uses the
lobular cluster to fit it, so the simple outlier removal strategy
s more suitable to find it. MVCOR is not specialized in outlier
etection, and it can still correctly find the two types of outliers
s well as use the outliers information to improve the clustering
esult.
10
6.3. Robustness to outliers

In this subsection, MVCOR is verified that it is more robust
than the multi-view clustering method using L2,1-norm only.

6.3.1. Datasets
For explanatory purposes, we conduct this experiment on

the synthetic dataset. This dataset is generate by the function
make_classification in python module scikit-learn, contains 600
instances, 4 clusters, 4 features, divided into 2 views, and each
view contains 2 features. We use the same method in the last
subsection to generate the two types of outliers. Then we get
the synthetic dataset with 420 normal instances, 120 class-outliers
and 60 attribute-outliers. The data distribution is shown in Fig. 4.

6.3.2. Experimental setup
We run MVCOR and RMKMC [16] on the dataset. In the be-

ginning, we just use the 420 normal instances. And then, we
add class-outliers and attribute-outliers little by little, as well as
observe the clustering performance on the 420 normal instances.
MVCOR uses Algorithm 2 to search the appropriate parameters.
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Fig. 6. The runtimes of different multi-view algorithms. DEKM runs 5 times than
he proposed method and does not arise in the chart.

.3.3. Experimental results
The experimental result is shown in Fig. 5. We observe that

ith the number of both class-outliers and attribute-outliers in-
reasing, the clustering performance of RMKMC degrades sharply.
owever, MVCOR avoids this situation by setting correct pa-
ameters θ1 and θ2. Thus outlier removal strategy can both im-
prove the clustering performance and enhance the robustness
of our method. We observe that MVCOR keep a more stable
performance as there are fewer outliers in most cases, which
empirically demonstrates that MVCOR is more robust than the
method using L2,1-norm only.

6.4. Runtime analysis

In this subsection, we will show that MVCOR scales almost
linearly with the data size. In our experiment, the stop criteria
is defined as following (but for co-train and co-reg, we run for
the same certain iterations):

|objt+1
− objt |

|objt |
< 10−2 (39)

here objt is the objective value in the tth iteration. nmax in
MVCOR is set to 0.1 number of instances. We randomly sam-
ple different numbers of instance from AWA dataset in the list
[3047, 6094, 9141, 12188, 15235], and then run all the
algorithms used in Section 6.1 while record the runtimes.

The result can be seen in Fig. 6. It is noted that the proposed
method MVCOR cost a nearly linear time complexity with the
data size, which can be easily applied to large-scale datasets.
Meanwhile, it verifies the correctness of theoretical analysis on
time complexity, i.e., O(tNMKdmax + tN log N), and the log term
indeed affects slightly. On the other hand, the outlier removal
strategy introduces a larger linear coefficient term, so MVCOR
works slightly slower than other linear models, while these extra
costs contribute to the improvement of the clustering perfor-
mance. For the graph-based method, co-train and co-reg work
well on small datasets, but when the size of dataset is scaled
up, the time cost increases rapidly, as well as the algorithms no
longer has any effect in clustering soon. Besides, the construction
of kernel or similarity matrices costs the O(N2) space complexity,
which is also unacceptable in large-scale dataset.

7. Conclusion

In this paper, we propose a robust multi-view k-means
method with outlier detection to remove the class-outlier and
11
attribute-outliers simultaneously. To remove the negative influ-
ence of outliers in multi-view data, we introduce two clusters to
hold these two types of outliers. Besides, our method inherits the
effectiveness of the classical k-means algorithm, with a low time
complexity which is the main advantage to analyze real-world
datasets. We also introduce an efficient alternating minimization
algorithm to optimize the model, and strictly prove its con-
vergence. Experimental results show that the proposed method
MVCOR performs well in clustering when the outliers appear a
percentage of the datasets, and can easily deal with the situation
that part of the outliers is class-outliers but other robust clustering
methods cannot do it. Also, MVCOR performs nearly equal to the
state-of-the-art method AP in outlier detection, illustrating that
the proposed method can find outliers correctly. However, the
algorithm based on k-means can only deal with the spherical
clusters. MVCOR is also based on k-means, thus it is not suitable
for the dataset with irregular shapes, which is left for future
research.
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